育種家のNさんから、Sarracenia purpurea form. heterophylla(以降サラセニアと略す)に1枚だけ奇妙な葉が付いているのに気づいたとのメイルをいただいた。お送りいただいた写真では、同じ株の他の葉は正常なので、突然変異体ではなく、この葉の発生途中になんらかの異常が生じたのではないかと考えられた。奇形葉は、普段は発生しないけれども、なんらかの刺激で形成されうるということは、将来、遺伝的変化でそのような形態が進化する可能性もあり、捕虫葉の進化可能性evolvabilityを考える上で興味深い(Fukushima et al. 2021)。ぜひ観察がしてみたく、お願いしたところ、早々に宅急便が到着した。Nさんに心より御礼申し上げます。捕虫葉を上から覗くと、捕虫葉内面向軸側(茎に近い側)から突起が伸びだしている(Aの白色矢印)。捕虫葉を縦切りにして背側から見ると(B)、突起は口の付近から基部まで繋がっている。横断面を見ると(C)、曲がったキールのように見える。
Ms. N-san, a plant breeder, sent me an e-mail saying that she had noticed one strange leaf on Sarracenia purpurea form. heterophylla (hereafter called Sarracenia). Since the other leaves on the same plant were normal in the photo she sent, I thought that it was not a mutant, but that some kind of abnormality must have occurred during the development of this leaf. The speculation that malformed leaves do not normally occur but can be formed by some stimuli is interesting in considering the evolvability of pitcher leaves (Fukushima et al. 2021), since such a morphology may evolve in the future due to genetic changes. I would very much like to observe it, so I asked her to send me, and the courier arrived in a few days. Thank you very much for N-san! Looking at the pitcher leaf from above, a protuberance is seen extending out from the adaxial inner side of the pitcher leaf (the side close to the stem) (white arrow in A). When the leaf is longitudinally cut and viewed from the abaxial (dorsal) side (B), the protuberance is connected from the mouth to the base. In transverse section (C), the protuberance looks like a curved keel.
内面の突起(A)はよく見ると、平面ではなく、先端が3つに別れた構造になっている(CーE)。(B)の白色点線部分を拡大すると、(C)のように縦に3列の辺縁(紫色、青色、赤色の星印)がある構造をしている。(D)にそれぞれの星印が対応する部分を横断面に書き込み、(E)に模式図を示した。キールの先端が3叉に分かれたような構造である。
The inner surface (A) is not flat, but has a structure with three separate tips (C-E). In C, area of the white dotted line in (B) is enlarged. The structure has three rows of vertical edges (purple, blue, and red stars in [C]). The corresponding area of each star is written on the transverse section in (D), and a schematic diagram is shown in (E). The structure of the keel is such that the tip of the keel is split into three forked pieces.
突起がどのようにできたかを考えるために、まず、通常の捕虫葉の発生過程を見てみよう。(A)から(E)はSarracenia purpurea ssp. venosa var. burkiiの捕虫葉の発生過程を走査電子顕微鏡で撮影したものである(Fukushima et al. 2015)。最初は平面葉のように平面上に発生するが(A、B)、100ミクロンほどになると向軸側に窪みができ、成長するにつれ、窪みが深くなる。(F)は(E)よりも大きくなった葉原基の縦断面である。
To consider how the protuberances were formed, let us first look at the developmental process of a normal pitcher leaf. (A) to (E) are scanning electron microscopic images of the developmental process of a pitcher leaf of Sarracenia purpurea ssp. venosa var. burkii (Fukushima et al. 2015). Initially, they develop on a flat surface like flat leaves (A, B), but at about 100 µm, it is adaxially concaved, and as they grow, further concaved deeper. (F) is a longitudinal section of a leaf primordium that is larger than (E).
窪みは、細胞の分裂方向が変化することによってできることがわかってきた。通常の植物の平面葉では、葉の表面に対して垂直方向の細胞分裂(垂層分裂:Aの断面図の赤線)が多く起こることで、葉は平面状に広がって成長する(Esau 1977)。サラセニアの葉では、先端側は平面葉と同じように垂層分裂(Bの断面図の赤線)がおきるが、基部側では、葉の表面と平行は細胞分裂(並層分裂:Bの断面図の水色線)を起こし、表面方向に出っ張って成長する。例えるならば(C)、サラセニアの葉の発生は、Tシャツを着てみぞおちのあたりを上側に引っ張ると、みぞおちのあたりに窪み(Cの白色矢印)ができるのと同じ仕組みである。そして、並層分裂が引き続くことによって、キールが形成される。どうして基部向軸側のみ並層分裂が起こるのかはわかっていない。オオバナイトタヌキモの捕虫葉形成についても研究が進んでいるが(Whitewood et al. 2020)、キールが形成されないので、サラセニアとは異なった仕組みだと考えられる。図は長谷部(2020)より引用。
It is known that concave is formed by changes in the direction of cell division (Fukushima et a. 2015). In the planar leaves of normal plants, cells in the subepidermal layers divide perpendicularly to the leaf surface (anticlinal cell divisions: red lines in the cross section in [A]), causing the leaf to expand and grow in a planar shape (Esau 1977). In Sarracenia leaves, the distal part of leaf undergoes anticlinal cell division (red line in cross section in [B]) as in planar leaves, but at the proximal part, cells divide parallel to the leaf surface (periclinal cell divisions: light blue line in cross section in [B]). The development of Sarracenia leaf is similar to the formation of a depression (white arrow in C) around the midsection of a T-shirt when the shirt is pulled upward around the midsection. The keel is then formed by continued periclinal cell divisions in the adaxial subepidermal cell layers. It is not known why the periclinal cell divisions are induced in the adaxial side. The formation of the bladder carnivorous leaf in Utricularia gibba has also been well studied (Whitewood et al. 2020), but since the keel is not formed, the mechanism is thought to be different from that of Sarracenia. Figure is cited from 長谷部 (2020).
通常の捕虫葉では、キールは向軸側の表皮に近い細胞が並層分裂することにより、向軸側にキールが形成される(A)。奇形葉では、窪みの内側に向かってキール様の突起ができることから、通常の葉で並層分裂を起こす仕組みが、異所的に袋の内側の表皮に近い細胞で起こることによって引き起こされたのかもしれない(B、C)。一方、キール様突起の先端が3つに分かれる理由はよくわからない。同じサラセニア科のヘリアンフォラ属は2枚のキールを形成するが(E)、襟の組織と繋がっており、奇形葉の先端部のみが3叉になるのとは異なっているように思われる。フクロユキノシタの捕虫葉の向軸側にできるキールは柄があり、先端が二叉になるが、中央の突起(C、Dの青色星印)は見当たらない。しかし、平面上の原基の二叉にする点では、似たような仕組みを使っている可能性もある。サラセニアの奇形葉はこれ以上研究することが難しいが、フクロユキノシタは無菌培養系も確立され、ゲノムも解読されているので(Fukushima et al. 2017)、二叉に分かれるキールの仕組みは植物の発生を考える上で新しい仕組みの解明につながるかもしれない。(A)、(B)は福島健児博士撮影。(H)はLloyd (1942)より改図。
In normal pitcher leaves, the keel is formed on the adaxial side by periclinal cell divisions (A). In the malformed leaf, a keel-like protrusion is formed toward the inner side of the depression, suggesting that the mechanism of periclinal cell division in normal leaves may be ectopically coopted in subepidermal tissue of the inner side of the pitcher (B, C). On the other hand, it is more unclear why the tip of the keel-like structure is divided into three parts. The genus Helianthus, also in the Sarraceniaceae, forms two keels (E), but they are divided from the connected point to the collar, which seems to be different from the trifurcation of only the apical part of the malformed leaf. The keel formed on the adaxial side of pitcher leaves of the Albany pitcher plant, Cephalotus follicularis is bifurcated at the tip (green arrow in [G, H] and a lateral keel that does not divide is shown in red arrow), but the central projection (blue star in C and D) is not visible. However, it is possible that they use a similar mechanism in terms of bifurcating the protuberance on the plane. While it is difficult to study the malformed leaves of Sarracenia further, it should be possible to study the mechanisms of bifurcated keel in Cephalotus follicularis, since a sterile culture system has been established and the genome has been available (Fukushima et al. 2017) and the mechanism of the bifurcated keel may lead to the elucidation of a new mechanism for plant development. Photos in (A) and (B) were taken by Dr. Kenji Fukushima. (H) is modified from Lloyd (1942)。
References:
Esau, K. (1977). Anatomy of Seed Plants (2nd ed.). John Wiley & Sons, Inc.
Fukushima, K., Fang, X., Alvarez-Ponce, D., Cai, H., Carretero-Paulet, L., Chen, C., Chang, T.-H., Farr, K. M., Fujita, T., Hiwatashi, Y., Hoshi, Y., Imai, T., Kasahara, M., Librado, P., Mao, L., Mori, H., Nishiyama, T., Nozawa, M., Pálfalvi, G., … Hasebe, M. (2017). Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol., 1: 59. http://dx.doi.org/10.1038/s41559-016-0059
Fukushima, K., Fujita, H., Yamaguchi, T., Kawaguchi, M., Tsukaya, H., & Hasebe, M. (2015). Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nat. Commun., 6: 6450.
Fukushima, K., Narukawa, H., Palfalvi, G., & Hasebe, M. (2021). A discordance of seasonally covarying cues uncovers misregulated phenotypes in the heterophyllous pitcher plant Cephalotus follicularis. Proc. Royal Soc. B: Biol. Sci. 288: 20202568. https://doi.org/10.1098/rspb.2020.2568
Lloyd, F. E. (1942). The Carnivorous Plants. Dover Publications, Inc.
Whitewoods, C. D., Whitewoods, C. D., Gonçalves, B., Cheng, J., Cui, M., & Kennaway, R. (2020). Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. Science 367: 91–96.
長谷部光泰. (2020). 陸上植物の形態と進化. 裳華房.