基礎生物学研究所 細胞動態研究部門

English

研究業績
Publications

  1. 原著論文
  2. 総説・著書

原著論文

原著論文 2023

  1. Saito, M., Momiki, R., Ebine, K., Yoshitake, Y., Nishihama, R., Miyakawa, T., Nakano, T., Mitsuda, N., Araki, T., Kohchi, T. and Yamaoka, S. (2023) A bHLH heterodimer regulates germ cell differentiation in land plant gametophytes. Curr Biol, 33: 4980-4987, doi: 10.1016/j.cub.2023.09.020
  2. Hirano, T., Ebine, K., Ueda, T., Higaki, T., Watanabe-Nakayama, T., Konno, H., Takigawa-Imamura, H. and Sato, M.H. (2023) The SYP123–VAMP727 SNARE complex delivers secondary cell wall components for root hair shank hardening in Arabidopsis. Plant Cell, 2023: 4347–4365, doi: 10.1093/plcell/koad240
  3. Yotsui, I., Matsui, H., Miyauchi, S., Iwakawa, H., Melkonian, K., Schlüter, T., Michavila, S., Kanazawa, T., Nomura, Y., Stolze, S.C., Jeon, H.W., Yan, Y., Harzen, A., Sugano, S.S., Shirakawa, M., Nishihama, R., Ichihashi, Y., Ibanez, S.G., Shirasu, K., Ueda, T., Kohchi, T. and Nakagami, H. (2023) LysM-mediated signaling in Marchantia polymorpha highlights the conservation of pattern-triggered immunity in land plants. Curr Biol, 33: 3732–3746, doi: 10.1016/j.cub.2023.07.068
  4. Norizuki, T., Minamino, N., Sato, M. and Ueda, T. (2023) Autophagy regulates plastid reorganization during spermatogenesis in the liverwort Marchantia polymorpha. Front Plant Sci, 14, 1101983, doi: 10.3389/fpls.2023.1101983

原著論文 2022

  1. Kanazawa, T., Nishihama, R. and Ueda, T. (2022) Normal oil body formation in Marchantia polymorpha requires functional Coat Protein Complex I proteins. Front Plant Sci, 13, 979066, doi: 10.3389/fpls.2022.979066
  2. Minamino, N., Norizuki, T., Mano, S., Ebine, K. and Ueda, T. (2022) Remodeling of organelles and microtubules during spermiogenesis in the liverwort Marchantia polymorpha. Development, 149, dev200951, doi: 10.1242/dev.200951
  3. †Koshimizu, S., †Minamino, N., Nishiyama, T., Yoro, E., Sato, M., Wakazaki, M., Toyooka, K., Ebine, K., Sakakibara, K., *Ueda, T. and *Yano, K. (2022) Phylogenetic distribution and expression pattern analyses identified a divergent basal body assembly protein involved in land plant spermatogenesis. New Phytol, doi: 10.1111/nph.18385 †co-first authors, *co-corresponding authors.
  4. Norizuki, T., Minamino, N., Sato, M., Tsukaya, H. and Ueda, T. (2022) Dynamic rearrangement and autophagic degradation of mitochondria during spermiogenesis in the liverwort Marchantia polymorpha. Cell Rep, 39, 110975, doi: 10.1016/j.celrep.2022.110975

原著論文 2021

  1. Shimada, T.L., Ueda, T. and Hara-Nishimura, I. (2021) Excess sterol accumulation affects seed morphology and physiology in Arabidopsis thaliana. Plant Signal Behav, 16: 4, 1872217, doi: 10.1080/15592324.2021.1872217
  2. Suzuki, R., Ueda, T., Wada, T., Ito, M., Ishida, T. and Sawa, S. (2021) Identification of genes involved in Meloidogyne incognita-induced gall formation processes in Arabidopsis thaliana. Plant Biotechnol (Tokyo), 38, 1-8, doi: 10.5511/plantbiotechnology.20.0716a
  3. Shimizu, Y., Takagi, J., Ito, E., Ito, Y., Ebine, K., Komatsu, Y., Goto, Y., Sato, M., Toyooka, K., Ueda, T., Kurokawa, K., Uemura, T. and Nakano, A. (2021) Cargo sorting zones in the trans-Golgi network visualized by super-resolution confocal live imaging microscopy in plants. Nat Commun, 12: 1901, doi: 10.1038/s41467-021-22267-0
  4. Otsuka, K., Mamiya, A., Konishi, M., Nozaki, M., Kinoshita, A., Tamaki, H., Arita, M., Saito, M., Yamamoto, K., Hachiya, T., Noguchi, K., Ueda, T., Yagi, Y., Kobayashi, T., Nakamura, T., Sato, Y., Hirayama, T. and Sugiyama, M. (2021) Temperature-dependent fasciation mutants provide a link between mitochondrial RNA processing and lateral root morphogenesis. ELife, eLife 2021;10:e61611, doi: 10.7554/eLife.61611

原著論文 2020

  1. Kanazawa, T., Morinaka, H., Ebine, K., Shimada, T.L., Ishida, S., Minamino, N., Yamaguchi, K., Shigenobu, S., Kohchi, T., Nakano, A., Ueda, T. (2020) The liverwort oil body is formed by redirection of the secretory pathway. Nat Commun, 11: 6152, doi: https://doi.org/10.1038/s41467-020-19978-1
  2. Lupanga, U., Röhrich, R., Askani, J., Hilmer, S., Kiefer, C., Krebs, M., Kanazawa, T., Ueda, T. and Schumacher, K. (2020) The Arabidopsis V-ATPase is localized to the TGN/EE via a seed plant-specific motif. Elife, eLife 2020;9:e60568, doi: 10.7554/eLife.60568
  3. Fujimoto, M., Ebine, K., Nishimura, K., Tsutsumi, N. and Ueda, T. (2020) Longin R-SNARE is retrieved from the plasma membrane by ANTH domain-containing proteins in Arabidopsis. Proc Natl Acad Sci U S A, 202011152, doi: https://doi.org/10.1073/pnas.2011152117
  4. Duan, Z., Tanaka, M., Kanazawa, T., Haraguchi, T., Takyu, A., Era, A., Ueda, T., Ito, K. and Tominaga, M. (2020) Characterization of ancestral myosin XI from Marchantia polymorpha by heterologous expression in Arabidopsis thaliana. Plant J, published online, doi: https://doi.org/10.1111/tpj.14937
  5. Romani, F., Banic, E., Florent, S.N., Kanazawa, T., Goodger, J.Q.D., Mentink, R., Dierschke, T., Zachgo, S., Ueda, T., Bowman, J.L., Tsiantis, M. and Moreno, J.E. (2020) Oil body formation in Marchantia polymorpha is controlled by MpC1HDZ and serves as a defense against arthropod herbivores. Curr Biol, 30: 2815-2828, doi: https://doi.org/10.1016/j.cub.2020.05.081
  6. Nurani, A.M., Ozawa, Y., Furuya, T., Sakamoto, Y., Ebine, K., Matsunaga, S., Ueda, T., Fukuda, H. and Kondo, Y. (2020) Deep Imaging Analysis in VISUAL Reveals the Role of YABBY Genes in Vascular Stem Cell Fate Determination. Plant Cell Physiol, published online, doi: https://doi.org/10.1093/pcp/pcaa002

原著論文 2019

  1. Shimada, T.L., Shimada, T., Okazaki, Y., Higashi, Y., Saito, K., Kuwata, K., Oyama, K., Kato, M., Ueda, H., Nakano, A., Ueda, T., Takano, Y. and Hara-Nishimura, I. (2019) HIGH STEROL ESTER 1 is a key factor in plant sterol homeostasis. Nat Plants, 5, 1154-1166, doi: https://doi.org/10.1038/s41477-019-0537-2
  2. Hiwatashi, T., Goh, H., Yasui, Y., Koh, L.Q., Takami, H., Kajikawa, M., Kirita, H., Kanazawa, T., Minamino, N., Togawa, T., Sato, M., Wakazaki, M., Yamaguchi, K., Shigenobu, S., Fukaki, H., Mimura, T., Toyooka, K., Sawa, S., Yamato, K.T., Ueda, T., Urano, D., Kohchi, T. and Ishizaki, K. (2019) The RopGEF KARAPPO Is Essential for the Initiation of Vegetative Reproduction in Marchantia polymorpha. Curr Biol, published online, doi: https://doi.org/10.1016/j.cub.2019.08.071
  3. D'Ippolito, R.A., Minamino, N., Rivera-Casas, C., Cheema, M.S., Bai, D.L., Kasinsky, H.E., Shabanowitz, J., Eirin-Lopez, J.M., Ueda, T., Hunt, D.F., and Ausió, J. (2019) Protamines from liverwort are produced by posttranslational cleavage and C-terminal di-aminopropanelation of several male germ–specific H1 histones. J Biol Chem, published online, doi: https://doi.org/10.1074/jbc.RA119.010316
  4. Norizuki, T., Kanazawa, T., Minamino, N., Tsukaya, H. and Ueda, T. (2019) Marchantia polymorpha, a New Model Plant for Autophagy Studies. Front Plant Sci, 10:935, doi:10.3389/fpls.2019.00935
  5. Shimada, T.L., Betsuyaku, S., Inada, N., Ebine, K., Fujimoto, M., Uemura, T., Takano, Y., Fukuda, H., Nakano, A. and Ueda, T. (2019) Enrichment of phosphatidylinositol 4,5-bisphosphate in the extra-invasive hyphal membrane promotes Colletotrichum infection of Arabidopsis thaliana. Plant Cell Physiol, pcz058, doi: https://doi.org/10.1093/pcp/pcz058
  6. Cui, Y., Cao, W., He, Y., Zhao, Q., Wakazaki, M., Zhuang, X., Gao, J., Zeng, Y., Gao, C., Ding, Y., Wong, H.Y., Wong, W.S., Lam, H.K., Wang, P., Ueda, T., Rojas-Pierce, M., Toyooka, K., Kang, BH. and Jiang, L. (2019) A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nat Plants, 5, 95-105, doi: https://doi.org/10.1038/s41477-018-0328-1
  7. Uemura, T., Nakano, R.T., Takagi, J., Wang, Y., Kramer, K., Finkemeier, I., Nakagami, H., Tsuda, K., Ueda, T., Schulze-Lefert, P. and Nakano, A. (2019) A Golgi-Released Subpopulation of the Trans-Golgi Network Mediates Protein Secretion in Arabidopsis. Plant Physiol, published online, doi: https://doi.org/10.1104/pp.18.01228

原著論文 2018

  1. Muro, K., Matsuura-Tokita, K., Tsukamoto, R., Kanaoka, M.M., Ebine, K., Higashiyama, T., Nakano, A. and Ueda, T. (2018) ANTH domain-containing proteins are required for the pollen tube plasma membrane integrity via recycling ANXUR kinases. Commun Biol, 1:152, doi: 10.1038/s42003-018-0158-8
  2. Fujimoto, M., Sazuka, T., Oda, Y., Kawahigashi, H., Wu, J., Takanashi, H., Ohnishi, T., Yoneda, J., Ishimori, M., Kajiya-Kanegae, H., Hibara, K., Ishizuna, F., Ebine, K., Ueda, T., Tokunaga, T., Iwata, H., Matsumoto, T., Kasuga, S., Yonemaru, J. and Tsutsumi, N. (2018) Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems. Proc Natl Acad Sci U S A, 201807501, doi: https://doi.org/10.1073/pnas.1807501115
  3. Kurusu, T., Mitsuka, D., Yagi, C., Kitahata, N., Tsutsui, T., Ueda, T., Yamamoto, Y., Negi, J., Iba, K., Betsuyaku, S. and Kuchitsu, K. (2018) Involvement of S-type anion channels in disease resistance against an oomycete pathogen in Arabidopsis seedling. Commun Integr Biol, DOI:10.1080/19420889.2018.1495007
  4. Ito, E., Ebine, K., Choi, S., Ichinose, S., Uemura, T., Nakano, A. and Ueda, T. (2018) Integration of Two RAB5 Groups during Endosomal Transport in Plants. Elife, eLife 2018;7:e34064, DOI: 10.7554/eLife.34064
  5. Takemoto, K., Ebine, K., Askani, j.C., Krüger, F., Gonzalez, Z.A., Ito, E., Goh, T., Schumacher, K., Nakano, A., Ueda, T. (2018) Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc Natl Acad Sci U S A, 115: E2457-E2466, doi:https://doi.org/10.1073/pnas.1717839115
  6. Minamino, N., Kanazawa, T., Era, A., Ebine, K., Nakano, A., Ueda, T. (2018) RAB GTPases in the basal land plant Marchantia polymorpha. Plant Cell Physiol, 59: 845-856, doi: https://doi.org/10.1093/pcp/pcy027

原著論文 2017

  1. Sánchez-Rodríguez, C., Yanyun Shi, Y., Kesten, C., Zhang, D., Sancho-Andrés, G., Ivakov, A., Lampugnani, E.R., Sklodowski, K., Fujimoto, M., Nakano, A., Bacic, A., Wallace, I.S., Ueda, T., van Damme, D., Zhou, Y. and Persson, S. (2017) The cellulose synthases are cargo of the TPLATE adaptor complex. Mol Plant, 11: 346-349, doi: http://dx.doi.org/10.1016/j.molp.2017.11.012
  2. Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., Yamaoka, S., Nishihama, R., Nakamura, Y., Berger, F., Adam, C., Aki, S.S., Althoff, F., Araki, T., Arteaga-Vazquez, M.A., Balasubrmanian, S., Barry, K., Bauer, D., Boehm, C.R., Briginshaw, L., Caballero-Perez, J., Catarino, B., Chen, F., Chiyoda, S., Chovatia, M., Davies, K.M., Delmans, M., Demura, T., Dierschke, T., Dolan, L., Dorantes-Acosta, A.E., Eklund, D.M., Florent, S.N., Flores-Sandoval, E., Fujiyama, A., Fukuzawa, H., Galik, B., Grimanelli, D., Grimwood, J., Grossniklaus, U., Hamada, T., Haseloff, J., Hetherington, A.J., Higo, A., Hirakawa, Y., Hundley, H.N., Ikeda, Y., Inoue, K., Inoue, S., Ishida, S., Jia, Q., Kakita, M., Kanazawa, T., Kawai, Y., Kawashima, T., Kennedy, M., Kinose, K., Kinoshita, T., Kohara, Y., Koide, E., Komatsu, K., Kopischke, S., Kubo, M., Kyozuka, J., Lagercrantz, U., Lin, S.S., Lindquist, E., Lipzen, A.M., Lu, C.W., De Luna, E., Martienssen, R.A., Minamino, N., Mizutani, M., Mizutani, M., Mochizuki, N., Monte, I., Mosher, R., Nagasaki, H., Nakagami, H., Naramoto, S., Nishitani, K., Ohtani, M., Okamoto, T., Okumura, M., Phillips, J., Pollak, B., Reinders, A., Rövekamp, M., Sano, R., Sawa, S., Schmid, M.W., Shirakawa, M., Solano, R., Spunde, A., Suetsugu, N., Sugano, S., Sugiyama, A., Sun, R., Suzuki, Y., Takenaka, M., Takezawa, D., Tomogane, H., Tsuzuki, M., Ueda, T., Umeda, M., Ward, J.M., Watanabe, Y., Yazaki, K., Yokoyama, R., Yoshitake, Y., Yotsui, I., Zachgo, S., and Schmutz, J. (2017) Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 171: 287-304, doi: http://dx.doi.org/10.1016/j.cell.2017.09.030
  3. Matsui, H., Nomura, Y., Egusa, M., Hamada, T., Hyon, GS., Kaminaka, H., Watanabe, Y., Ueda,, T., Trujillo, M., Shirasu, K., and Nakagami, H. (2017) The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions. PLoS Genet, 13: e1007037, doi: 10.1371/journal.pgen.1007037
  4. Ung, H., Karia, P., Ebine, K., Ueda, T., Yoshioka, K., and Moeder, W. (2017) Triphosphate Tunnel Metalloenzyme Function in Senescence Highlights a Biological Diversification of This Protein Superfamily. Plant Physiol, 175: 473-485, doi:10.1104/pp.17.00700
  5. Inada, N., Ebine, K., Ito, E., Nakano, A., and Ueda, T. (2017) Constitutive activation of plant-specific RAB5 GTPase confers increased resistance against adapted powdery mildew fungus. Plant Biotechnol (Tokyo), 34: 89-95, doi:10.5511/plantbiotechnology.17.0501a
  6. Ito, Y., Toyooka, K., Fujimoto, M., Ueda, T., Uemura, T. and Nakano A. (2017) The trans-Golgi network and the Golgi stacks behave independently during regeneration after Brefeldin A treatment in tobacco BY-2 cells. Plant Cell Physiol, 58: 811-821, doi:10.1093/pcp/pcx028
  7. Minamino, N., Kanazawa, T., Nishihama, R., Yamato, K.T., Ishizaki, K., Kohchi, T., Nakano, A. and Ueda, T. (2017) Dynamic reorganization of the endomembrane system during spermatogenesis in Marchantia polymorpha. J Plant Res, 130: 433-441, doi:10.1007/s10265-017-0909-5
  8. Cui, Y., Zhao, Q., Xie, HT.,Wong, WS., Gao, C., Ding, Y., Tan, Y., Ueda, T., Zhang, Y. and Jiang, L. (2017) MON1/CCZ1-mediated Rab7 activation regulates tapetal programmed cell death and pollen development in Arabidopsis. Plant Physiol, 173:206-218, doi: http://dx.doi.org/10.1104/pp.16.00988
  9. Akita, K., Kobayashi, M., Sato, M., Kutsuna, N., Ueda, T., Toyooka, K., Nagata, N., Hasezawa, S., and Higaki, T. (2017) Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated apoplastic space in Arabidopsis leaf epidermis. Protoplasma, 254: 367-377, doi:10.1007/s00709-016-0955-1

原著論文 2016

  1. Mbengue, M., Bourdais, G., Gervasi, F., Beck, M., Zhou, J., Spallek, T., Bartels, S., Boller, T., Ueda, T., Kuhn, H. and Robatzek, S. (2016) Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. Proc Natl Acad Sci U S A, 113: 11034-11039, doi: 10.1073/pnas.1606004113
  2. Yoshinari, A., Fujimoto, M., Ueda, T., Inada, N., Naito, S. and Takano, J. (2016) DRP1-dependent Endocytosis Is Essential for Polar Localization and Boron-induced Degradation of the Borate Transporter BOR1 in Arabidopsis thaliana. Plant Cell Physiol, 57: 1985-2000, doi: 10.1093/pcp/pcw121
  3. Sakurai, H., Inoue, T., Nakano, A. and Ueda, T. (2016) ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN, an Interacting Partner of RAB5 GTPases, Regulates Membrane Trafficking to Protein Storage Vacuoles in Arabidopsis. Plant Cell, 26: 1490-0503, doi: 10.1105/tpc.16.00326
  4. Inada, N., Betsuyaku, S., Shimada, T., Ebine, K., Ito, E., Kutsuna, N., Hasezawa, S., Takano, Y., Fukuda, H., Nakano, A., and Ueda, T. (2016) Modulation of plant RAB GTPase-mediated membrane trafficking pathway at the interface between plants and obligate biotrophic pathogens. Plant Cell Physiol, 57: 1854-1864, doi: 10.1093/pcp/pcw107
  5. Wu, X., Ebine, K., Ueda, T. and Qiu, Q. (2016) AtNHX5 and AtNHX6 are Required for the Subcellular Localization of the SNARE Complex that Mediates the Trafficking of Seed Storage Proteins in Arabidopsis. PLoS One, 11(3): e0151658, doi: 10.1371/journal.pone.0151658
  6. Ito, E., Uemura, T., Ueda, T. (corresponding author), and Nakano, A. (2016) Distribution of RAB5-positive multivesicular endosomes and the trans-Golgi network in root meristematic cells of Arabidopsis thaliana. Plant Biotechnol (Tokyo), 33: 281-286, doi: 10.5511/plantbiotechnology.16.0218a
  7. Sunada, M., Goh, T., Ueda, T. (corresponding author) and Nakano, A. (2016) Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana. J Plant Res, 129: 93-102, doi: 10.1007/s10265-015-0760-5
  8. Kanazawa, T., Era, A., Minamino, N., Shikano, Y., Fujimoto, M., Uemura, T., Nishihama, R., Yamato, K.T., Ishizaki, K., Nishiyama, T., Kohchi, T., Nakano, A. and Ueda, T. (2016) SNARE Molecules in Marchantia polymorpha: Unique and Conserved Features of the Membrane Fusion Machinery. Plant Cell Physiol, 57: 307-324, doi: 10.1093/pcp/pcv076

原著論文 2011 - 2015

  1. Chanoca, A., Kovinich, N., Burkel, B., Stecha, S., Bohorquez-Restrepo, A., Ueda, T., Eliceiri, KW., Grotewold, E. and Otegui, MS. (2015) Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism. Plant Cell, 27: 2545-2559, doi: http://dx.doi.org/10.1105/tpc.15.00589
  2. Wen, L., Fukuda, M., Sunada, M., Ishino, S., Ishino, Y., Okita, W.T., Ogawa, M., Ueda, T. and Kumamaru, T. (2015) Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. J Exp Bot, 66: 6137-6147, doi: 10.1093/jxb/erv325
  3. Tsutsui, T., Nakano, A. and Ueda, T. (2015) The plant-specific RAB5 GTPase ARA6 is required for starch and sugar homeostasis in Arabidopsis thaliana. Plant Cell Physiol, 56: 1073-1083, doi: 10.1093/pcp/pcv029
  4. Hoepflinger, M.C., Geretschlaeger, A., Sommer, A., Hoeftberger, M., Tenhaken, R., Ueda, T., and Foissner, I. (2015) Molecular analysis and localization of CaARA7 a conventional RAB5 GTPase homolog from characean algae. Traffic, 16: 534-554, doi: 10.1111/tra.12267
  5. Fujimoto, M., Suda, Y., Vernhettes, S., Nakano, A. and Ueda, T. (2015) Phosphoinositides have distinct roles in intracellular trafficking of the cellulose synthase complex in Arabidopsis thaliana. Plant Cell Physiol, 56: 287-298, doi:10.1093/pcp/pcu195 (selected as Editor-in-Chief’s Choice)
  6. Ebine, K., Inoue, T., Ito, J., Ito, E., Uemura T., Goh, T., Abe, A., Sato, K., Nakano, A., and Ueda, T. (2014) Plant vacuolar trafficking occurs through distinctly regulated pathways. Curr Biol, 24: 1375-1382, doi: 10.1016/j.cub.2014.05.004
  7. Cui, Y., Zhao, Q., Gao, C., DingY., Zeng, Y., Ueda, T., Nakano, A., and Jiang, L. (2014) Rab7 activation by the MON1-CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in Arabidopsis, Plant Cell, 26: 2080-2097, doi: http://dx.doi.org/10.1105/tpc.114.123141
  8. Hoepflinger, M., Hametner, C., Ueda, T. and Foissner I. (2014) Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein. Plant Signal Behav, e28466, doi: 10.4161/psb.28466
  9. Kawai-Toyooka, H., Mori, T., Hamaji, T., Suzuki, M., Olson, BJSC., Uemura, T., Ueda, T., Nakano, A., Toyoda, A., Fujiyama, A. and Nozaki, H. (2014) Sex-specific Post-translational Regulation of the Gamete Fusogen GCS1 in the Isogamous Volvocine Alga Gonium pectoral. Eukaryot Cell, 13: 648-656, doi: 10.1128/EC.00330-13
  10. Fujiwara, M., Uemura, T., Ebine, K., Nishimori, Y., Ueda, T., Nakano, A., Sato, MH. and Fukao, Y. (2014) Interactomics of Qa-SNARE in Arabidopsis thaliana. Plant Cell Physiol, 55: 781-789, doi: 10.1093/pcp/pcu038
  11. Hashiguchi, Y., Yano, D., Nagafusa, K., Kato, T., Saito, C., Uemura, T., Ueda, T., Nakano, A., Tasaka, M. and Morita, MT (2014) A unique HEAT repeat-containing protein SHOOT GRAVITROPISM 6 is involved in vacuolar membrane dynamics in gravity sensing cells of Arabidopsis inflorescence stem. Plant Cell Physiol, 55, 811-822, doi: 10.1093/pcp/pcu020
  12. Uemura, T., Suda, Y., Ueda, T. and Nakano, A. (2014) Dynamic behavior of the trans-Golgi network in root tissues of Arabidopsis revealed by super-resolution live imaging. Plant Cell Physiol, 55, 694-703, doi: 10.1093/pcp/pcu010
  13. Hoepflinger, M., Geretschlaeger, A., Hoeftberger, M., Sommer, A., Nishiyama, T., Sakayama, Hammerl, P., H., Tenhaken, R., Ueda, T., Foissner I. (2013) Molecular and biochemical analysis of the first ARA6 homolog, a Rab5 GTPase, from green algae. J Exp Bot, 64, 5553-68, doi: 10.1093/jxb/ert322
  14. Nakamura, H., Xue, Y., Miyakawa, T., Hou, F., Qin, H., Fukui, K., Shi, X., Ito, E., Park, S., Miyauchi, Y., Asano, A., Totsuka, N., Ueda, T., Tanokura, M., and Asami, T. (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun, 4: 2613 doi: 10.1038/ncomms3613
  15. Inoue, T., Kondo, Y., Naramoto, S., Nakano, A., and Ueda, T. (2013) RAB5 activation is required for multiple steps in Arabidopsis thaliana root development. Plant Cell Physiol, 54, 1648-1659, doi: 10.1093/pcp/pct109
  16. Asaoka, R., Uemura, T., Nishida, S., Fujiwara, T., Ueda T. and Nakano, A. (2013) New insights into the role of RABA1 GTPases in salinity stress tolerance. Plant Signal Behav, e25377 doi: 10.4161/psb.25377
  17. Jia, T., Gao, C., Cui, Y., Wang, J., Ding, Y., Cai, Y., Ueda, T., Nakano, A. and Jiang, L. (2013) ARA7(Q69L) expression in transgenic Arabidopsis cells induces the formation of enlarged multivesicular bodies. J Exp Bot, 64, 2817-29, doi: 10.1093/jxb/ert125
  18. Fukuda, M., Wen, L., Satoh-Cruz, M., Kawagoe, Y., Nagamura, Y., Okita, TW., Washida, H., Sugino, A., Ishino, S., Ishino, Y., Ogawa, M., Sunada, M., Ueda, T., and Kumamaru, T. (2013) A guanine nucleotide exchange factor for Rab5 proteins is essential for intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. Plant Physiol, 162: 663-674, doi: http:/ / dx. doi. org/ 10. 1104/ pp. 113
  19. Choi, S., Tamaki, T., Ebine, K., Uemura, T., Ueda, T. (corresponding author), and Nakano, A. (2013) RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING 2 receptor. Plant Cell, 25; 1174-1187, doi: http://dx.doi.org/10.1105/tpc.112.108803
  20. Uejima, T., Ihara, K., Sunada, M., Kawasaki, M., Ueda, T., Kato, R., Nakano, A., and Wakatsuki, S. (2013) Direct metal recognition by guanine nucleotide exchange factor in the initial step of exchange reaction. Acta Crystallogr D Struct Biol, 69: 345-351, doi:10.1107/S0907444912047294
  21. Asaoka, R., Uemura, T., Ito, J., Fujimoto, M., Ito, E., Ueda, T., and Nakano, A. (2013) RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J, 73:240-249, DOI: 10.1111/tpj.12023
  22. Era, A., Kutsuna, N., Higaki, T., Hasezawa S., Nakano, A., and Ueda, T. (2013) Microtubule stability affects the unique motility of F-actin in Marchantia polymorpha. J Plant Res, 126, 113-119, DOI: 10.1007/s10265-012-0496-4
  23. Ebine, K., Uemura, T., Nakano, A., and Ueda, T. (2012) Flowering time modulation by a vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana. PLoS One, 7 (7): e442239, DOI: 10.1371/journal.pone.0042239
  24. Uemura, T., Ueda, T., and Nakano, A. (2012) The physiological role of SYP4 in the abiotic stress response. Plant Signal Behav, 7: 1118-1120, DOI: 10.4161/psb.21307
  25. Ito, Y., Uemura, T., Shoda, K., Fujimoto, M., Ueda, T., and Nakano, A. (2012) cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol Biol Cell, 23: 3203-3214, DOI: 10.1091/mbc.E12-01-0034
  26. Nielsen, ME., Feechan, A., Böhlenius, H., Ueda, T., and Christensen, HT. (2012) The Arabidopsis ARF-GEF, GNOM, mediates transport required for innate immunity and focal accumulation of PEN1. Proc Natl Acad Sci U S A, 109: 11443-11448, DOI: 10.1073/pnas.1117596109
  27. Higaki, T., Kutsuna, N., Hosokawa, Y., Akita, K., Ebine, K., Ueda, T., Kondo, N., and Hasezawa, S. (2012) Statistical organelle dissection of Arabidopsis guard cells using image database LIPS. Sci Rep, DOI: 10.1038/srep00405
  28. Uemura, T., Kim, H., Saito, C., Ebine, K., Ueda, T., Schulze-Lefert, P., and Nakano, A. (2012) Qa-SNAREs localised to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc Natl Acad Sci U S A, 109: 1784-1789, DOI: 10.1073/pnas.1115146109
  29. Ebine, K., Miyakawa, N., Fujimoto, M., Uemura, T., Nakano, A., and Ueda, T. (2012) An endosomal trafficking pathway regulated by the plant-unique RAB5, ARA6. Small GTPases, 3: 1-5, http://www.landesbioscience.com/journals/smallgtpases/article/18299/
  30. Ito, E., Fujimoto, M., Ebine, K., Uemura, T., Ueda, T. (corresponding author) and Nakano A. (2012) Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J, 69: 204-216, DOI: 10.1111/j.1365-313X.2011.04782.x
  31. Minamisawa, N., Sato, M., Cho, KH., Ueno, H., Takechi, K., Kajikawa, M., Yamato, KT., Ohyama, K., Toyooka, K., Kim, GT., Horiguchi, G., Takano, H., Ueda, T., and Tsukaya, H. (2011) ANGUSTIFOLIA, a plant homolog of CtBP/BARS, functions outside the nucleus. Plant J, 68: 788-799, DOI: 10.1111/j.1365-313X.2011.04731.x
  32. Saito, C., Uemura, T., Awai, C., Ueda, T., Abe, H. and Nakano, A. (2011) Qualitative difference between "bulb" membranes and other vacuolar membranes. Plant Signal Behav, 6: 1914-1917, DOI: 10.4161/psb.6.12.18061
  33. Saito, C., Uemura, T., Awai, C., Tominaga, M., Ebine, K., Ito, J., Ueda, T., Abe, H., Morita, MT., Tasaka, M. and Nakano, A. (2011) The occurrence of bulbs, a complex configuration of the vacuolar membrane, is affected by mutations of vacuolar SNARE and phospholipase in Arabidopsis. Plant J, 68: 67-73, DOI: 10.1111/j.1365-313X.2011.04665.x
  34. Ebine, K., Fujimoto, M., Okatani, Y., Nishiyama, T., Goh, T., Ito, E., Dainobu, T., Nishitani, A., Uemura, T., Sato, MH., Thordal-Christensen, H., Tsutsumi, N., Nakano, A., and Ueda, T. (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol, 13: 853-860, DOI: 10.1038/ncb2270

原著論文 2010以前の重要なもの

  1. Naramoto, S., Kleine-Vehna, J., Robert, S., Fujimotoc, M., Dainobu, T., Paciorekd, T., Ueda, T., Nakano, A., Van Montagu, M.C.E., Fukuda, H., and Friml, J. (2010) ADP-ribosylation factor (ARF), guanine nucleotide exchange factor (GEF), and GTPase-activating protein (GAP) function in endocytosis of plant cells. Proc Natl Acad Sci U S A, 107: 21890-21895, DOI: 10.1073/pnas.1016260107
  2. Uemura, T., Morita, TM., Ebine, K., Okatani, Y., Yano, D., Saito, C., Ueda, T., and Nakano, A. (2010) Vacuolar/prevacuolar compartment Qa-SNAREs, VAM3/SYP22 and PEP12/SYP21 have interchangeable functions in Arabidopsis. Plant J, 64: 864-873, DOI: 10.1111/j.1365-313X.2010.04372.x
  3. Fujimoto, M., Arimura, S., Ueda, T., Takanashi, H., Hayashi, Y., Nakano, A. and Tsutsumi, N. (2010) Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis. Proc Natl Acad Sci U S A, 107: 6094-6099, DOI: 10.1073/pnas.0913562107
  4. Chen, L., Hamada, S., Fujiwara, M., Zhu, T., Thao, NP., Wong, HL., Krishna, P., Ueda, T., Kaku, H., Shibuya, N., Kawasaki, T., and Shimamoto, K. (2010) The Hop/Sti1-Hsp90 Chaperone Complex Facilitates the Maturation and Transport of a PAMP Receptor in Rice Innate Immunity. Cell Host Microbe, 7: 185-196, DOI: 10.1016/j.chom.2010.02.008
  5. Boutté, Y., Rosa, MSF., Men, S., Chow, C., Ebine, K., Gustavsson, A., Johansson, L., Ueda, T., Moore, I., Jürgens, G., Grebe, M. (2010) Endocytosis Restricts Arabidopsis KNOLLE Syntaxin To The Cell Division Plane During Late Cytokinesis. EMBO J, 29: 546-558, DOI: 10.1038/emboj.2009.363
  6. Era, A., Tominaga, M., Ebine, K., Awai, C., Saito, C., Ishizaki, K., Yamato, TK., Kohchi, T., Nakano, A., and Ueda, T. (2009) Application of Lifeact Reveals F-Actin Dynamics in Arabidopsis thaliana and the Liverwort, Marchantia polymorpha. Plant Cell Physiol, 50: 1041-1048, DOI: 10.1093/pcp/pcp055 (paper of the month in “The Illuminate Plant Cell”, http://www.illuminatedcell.com/Home.html)
  7. Ebine, K., Okatani, Y., Uemura, T., Goh, T., Shoda, K., Niihama, M., Morita, MT., Spitzer, C., Otegui, MS., Nakano, A. and Ueda, T. (2008) A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell, 20: 3006-3021
  8. Goh, T., Uchida, W., Arakawa, S., Ito, E., Dainobu, T., Ebine, K., Takeuchi, M., Sato, K., Ueda, T. (corresponding author) and Nakano, A. (2007) VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for development of Arabidopsis thaliana. Plant Cell, 19: 3504-3515
  9. Haas, TJ., Sliwinski, MK., Martinez, DE., Preuss, M., Ebine, K., Ueda, T., Nielsen, N., Odorizzi, G. and Otegui, MS. (2007) The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LIP5. Plant Cell, 19: 1295-1312
  10. Ueda, T., Uemura, T., Sato, M.H. and Nakano A. (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J, 40: 783-789.
  11. Grebe, M., Xu, J., Möius, W., Ueda, T., Nakano, A., Geuze, H.J., Rook, M.B. and Scheres, B. (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via Ara6-positive early endosomes. Curr Biol, 13: 1378-1387.
  12. Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A. and Jürgens, G. (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport and auxin-dependent plant growth. Cell, 112: 219-230.
  13. Takeuchi, M., Ueda, T., Yahara, N. and Nakano, A. (2002) Arf1 GTPase plays roles in the protein traffic between the endoplasmic reticulum and the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J, 31: 499-515.
  14. Saito, C., Ueda, T., Abe, H., Wada, Y., Kuroiwa, T., Hisada, A., Furuya, M. and Nakano, A. (2002) A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J, 29: 245-255.
  15. Morita, M.T., Kato, T., Nagafusa, K., Saito, C., Ueda, T., Nakano, A. and Tasaka, M. (2002) Involvement of the Vacuoles of the Endodermis in the Early Process of Shoot Gravitropism in Arabidopsis. Plant Cell, 14: 47-56.
  16. Ueda, T., Yamaguchi, M., Uchimiya, H. and Nakano, A. (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J, 20: 4730-4741.
  17. Yahara, N., Ueda, T., Sato, K. and Nakano, A. (2001) Multiple roles of Arf1 GTPase in the yeast exocytic and endocytic pathways. Mol Biol Cell, 12: 221-238.
  18. Takeuchi, M., Ueda, T., Sato, K., Abe, H., Nagata, T. and Nakano, A. (2000) A dominant negative mutant of Sar1 GTPase inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J, 23: 517-525.
  19. Ueda, T., Matsuda, N., Uchimiya, H. and Nakano, A. (2000) Modes of interaction between the Arabidopsis Rab protein, Ara4, and its putative regulator molecules revealed by a yeast expression system. Plant J, 21: 341-349.
  20. Ueda, T., Matsuda, N., Anai, T., Tsukaya, H., Uchimiya, H. and Nakano, A. (1996) An Arabidopsis gene isolated by a novel method for detecting genetic interaction in yeast encodes the GDP dissociation inhibitor of Ara4 GTPase. Plant Cell, 8: 2079-2091.

総説・著書

英文総説

  1. Bowman, J.L., Arteaga-Vazquez, M., Berger, F., Briginshaw, L.N., Carella, P., Aguilar-Cruz, A., Davies, K.M., Dierschke, T., Dolan, L., Dorantes-Acosta, A.E., Fisher, T.J., Flores-Sandoval, E., Futagami, K., Ishizaki, K., Jibran, R., Kanazawa, T., Kato, H., Kohchi, T., Levins, J., Lin, S.S., Nakagami, H., Nishihama, R., Romani, F., Schornack, S., Tanizawa, Y., Tsuzuki, M., Ueda, T., Watanabe, Y., Yamato, K.T. and Zachgo, S. (2022) The renaissance and enlightenment of Marchantia as a model system. Plant Cell, 34:3512-3542, doi: 10.1093/plcell/koac219
  2. Norizuki, T. and Ueda T. (2022) Autophagy regulates organelle reorganization during spermiogenesis in the liverwort Marchantia polymorpha. Autophagy, published online, doi: https://doi.org/10.1080/15548627.2022.2096396
  3. Feng, Y., Hiwatashi, T., Minamino, N., Ebine, K. and Ueda, T. (2022) Membrane trafficking functions of the ANTH/ENTH/VHS domain-containing proteins in plants. FEBS Lett, doi: 10.1002/1873-3468.14368
  4. Ito, E., Choi, S. and Ueda, T. (2020) Purification and interaction analysis of a plant-specific RAB5 effector by in vitro pull-down assay. Plant Endosomes: Methods and Protocols, Marisa S. Otegui (ed) Methods in Molecular Biology, 2177: 183-197, doi: https://doi.org/10.1007/978-1-0716-0767-1_15
  5. Norizuki, T., Minamino, N. and Ueda, T. (2020) Role of Autophagy in Male Reproductive Processes in Land Plants. Front Plant Sci, 11:756, doi: 10.3389/fpls.2020.00756
  6. Minamino, N. and Ueda, T. (2019) RAB GTPases and their effectors in plant endosomal transport. Curr Opin Plant Biol, 52, 61-68, doi: https://doi.org/10.1016/j.pbi.2019.07.007
  7. Kanazawa, T. and Ueda, T. (2017) Exocytic trafficking pathways in plants: why and how they are redirected. New Phytol, 215:952-957. doi: 10.1111/nph.14613
  8. Bowman, J. L., Araki, T., Arteaga-Vazquez, M. A., Berger, F., Dolan, L., Haseloff, J., Ishizaki, K., Kyozuka, J., Lin, S., Nagasaki, H., Nakagami, H., Nakajima, K., Nakamura, Y., Ohashi-Ito, K., Sawa, S., Shimamura, M., Solano, R., Tsukaya, H., Ueda, T., Watanabe, Y., Yamato, K. T., Zachgo, S. and Kohchi, T. (2016) The naming of names: guidelines for gene nomenclature in Marchantia. Plant Cell Physiol, 57: 257-261, DOI: 10.1093/pcp/pcv193
  9. Ebine, K., and Ueda, T. (2015) Roles of membrane trafficking in plant cell wall dynamics. Front Plant Sci, doi: 10.3389/fpls.2015.00878
  10. Uemura, T. and Ueda, T. (2014) Plant vacuolar trafficking driven by RAB and SNARE proteins. Curr Opin Plant Biol, 22: 116-121, DOI: 10.1016/j.pbi.2014.10.002
  11. Ueda, T. (2014) Cellulase in Cellulose Synthase: A Cat among the Pigeons? Plant Physiol, 165: 1397-1398. DOI: http://dx.doi.org/10.1104/pp.114.245753
  12. Inada, N. and Ueda, T. (2014) Membrane Trafficking Pathways and their Roles in Plant-Microbe Interactions. Plant Cell Physiol, 55: 672-686, DOI: 10.1093/pcp/pcu046
  13. Ito, E. and Ueda, T. (2014) Analysis of Rab GTPase-effector interaction in endosomal trafficking by bimolecular fluorescence complementation. Methods in Molecular Biology, 1209: 97-105, DOI: 10.1007/978-1-4939-1420-3_7
  14. Ueda, T., Sato, M.H., and Uemura, T. (2012) The role of Rab GTPases and SNARE proteins in plant endocytosis and post-Golgi trafficking. Endocytosis in Plants, Edited by Jozef Samaj, Springer, 201-216. DOI: 10.1007/978-3-642-32463-5_10
  15. Fujimoto, M. and Ueda, T. (2012) Conserved and plant-unique mechanisms regulating plant post-Golgi traffic. Front Plant Sci, 3: 197. DOI: 10.3389/fpls.2012.00197
  16. Saito, C. and Ueda, T. (2009) Function of RAB and SNARE members in plant life. Int Rev Cell Mol Biol, 274: 183-233, DOI: 10.1016/S1937-6448(08)02004-2
  17. Ebine, K. and Ueda T. (2009) Unique mechanism of plant endocytic/vacuolar transport pathways. J Plant Res, 122: 21-30, DOI: 10.1007/s10265-008-0200-x
  18. Nielsen, E., Cheung, A.Y. and Ueda, T. (2008) The Regulatory RAB and ARF GTPases for Vesicular Trafficking. Plant Physiol, 147: 1516-1526
  19. Ueda, T. and Nakano, A. (2002) Vesicular traffic: an integral part of plant life. Curr Opin Plant Biol, 5: 513-517.
  20. Ueda, T. and Nakano, A. (2001) Plant-unique system for the regulation of endocytic pathway. RIKEN Rev., 41: 88-89.
  21. Uchimiya, H., Anai, T., Aspuria, E.T., Matsui, M., Nakano, A. and Ueda, T. (1998) The biological roles of small GTPases and interacting proteins in plants. J Plant Res, 111: 257-260.

和文総説

  1. 金澤建彦,上田貴志(2022)苔類の「油体」から探る植物のオルガネラ進化 オルガネラ獲得への道程.化学と生物.Vol.60 No.1: 5-7
  2. 海老根一生,上田貴志(2015)細胞壁の構築・維持と膜交通システム.植物の生長調節.Vol.50: 43-49
  3. 藤本優,上田貴志 (2014) 膜交通経路の多様性獲得機構から見た植物のポストゴルジ輸送網. 植物科学の最前線(BSJ-Review)Vol. 5: 3-20
  4. 恵良厚子,上田貴志(2012)ゼニゴケ細胞生物学.植物科学の最前線(BSJ-Review)Vol. 3: 114-121
  5. 藤本優,上田貴志(2012)細胞壁資材の細胞内輸送-植物の膜交通と細胞壁-.遺伝.Vol. 66: 47-52,エヌ・ティー・エス
  6. 海老根一生,上田貴志(2011)陸上植物固有の膜交通制御因子が植物の新たな細胞内輸送経路を開拓した.ライフサイエンス新着論文レビュー. http://first.lifesciencedb.jp/archives/3119 ライフサイエンス統合データベースセンター.
  7. 上田貴志(2010)植物のSNARE複合体と膜融合.生体の科学.Vol. 61: 269-275(財)金原一郎記念医学医療振興財団/医学書院
  8. 上田貴志(2008)植物のエンドサイトーシス. 蛋白質核酸酵素増刊号 メンブレントラフィックの奔流.pp2295-2300 共立出版
  9. 上田貴志(2004)オーキシンの輸送メカニズム. 植物細胞工学シリーズ20.新版 植物ホルモンのシグナル伝達. pp52-59 秀潤社
  10. 上田貴志(2003)高等植物における小胞輸送研究 〜多様な高次機能発現における普遍的分子装置の役割を探る〜,実験医学増刊号14 細胞内輸送の最前線,pp142-146,羊土社
  11. 上田貴志(2002)植物細胞におけるエンドサイトーシス,植物細胞工学シリーズ17,植物オルガネラの分化と多様性,pp77-84,秀潤社 (2002)

著書

  1. Encyclopedia of Cell Biology (Second Edition) Bradshaw, R.A., Hart, G.W., Stahl, P.D.編,Academic Press(分担執筆)
  2. DOJIN BIOSCIENCEシリーズ メンブレントラフィック 福田光則,吉森保編(分担執筆)化学同人
  3. 植物細胞壁実験法 石井忠,石水毅,梅澤俊明,加藤陽治,岸本崇生,小西照子,松永俊朗編(分担執筆)
  4. 植物細胞壁 —基礎と応用— 西谷和彦,梅澤俊明編(分担執筆)
  5. 進化学辞典 日本進化学会編(分担執筆)
  6. 東大式現代科学用語ナビ キーワードでわかるサイエンスの「いま」 東京大学理学系研究科・理学部編(分担執筆)
  7. 植物の細胞を観る実験プロトコール新版 顕微鏡観察の基本から最新バイオイメージング技術まで 福田裕穂,西村幹夫,中野明彦編,秀潤社(分担執筆)
  8. モデル植物の実験プロトコール改訂第3版 イネ・シロイヌナズナ・ミヤコグサ編,島本功,岡田清孝,田畑哲之編,秀潤社(分担執筆)
  9. GFPとバイオイメージング 蛍光タンパク質の発現と検出の基本から生体機能の可視化まで 宮脇敦史編,羊土社(分担執筆)
  10. 朝倉植物生理学講座第一巻,植物細胞,西村幹夫編,朝倉書店(分担執筆)2002年
  11. 細胞生物学事典,朝倉書店(分担執筆)
ページトップ