原著論文

  1. Kunita, I., Morita M.T., Toda, M., Higaki, T. (2021) A three-dimensional scanning system for digital archiving and quantitative evaluation of Arabidopsis plant architectures. Plant Cell Physiol. pcab068, https://doi.org/10.1093/pcp/pcab068
  2. Abe, Y., Meguriya, K., Matsuzaki, T., Sugiyama, T., Yoshikawa, H.Y., Morita, M.T., Toyota, M. (2020) Micromanipulation of the plant organelle amyloplast by optical tweezers. Plant Biotechnology, 37: 405-415. https://doi.org/10.5511/plantbiotechnology.20.1201a
  3. Tsugawa, S.*, Sano, T.G., Shima, H., Morita, M.T., Demura T. (2020) Model-based study of shoot gravitropism: mechanics perspective. Quantitative Plant Biology, 1: e4. https://doi.org/10.1017/qpb.2020.5
  4. Shindo M., Makigawa, S., Kodama, K., Matsumoto, K., Iwata, T., Wasano, N., Kano, A., Morita, M.T., Fujii, Y. (2020) Design and chemical synthesis of root gravitropism inhibitors: Bridged analogues of ku-76 have more potent activity. Phytochemistry, 179: 112508.
  5. Kawamoto, N., Kanbe, Y., Nakamura, M., Mori, A. Morita, M.T. (2020) Gravity-Sensing Tissues for Gravitropism Are Required for“Anti-Gravitropic” Phenotypes of Lzy Multiple Mutants in Arabidopsis. Plants. 9(5), 615. doi: 10.3390/plants9050615.
  6. Mergner, J., Frejno, M., List, M., Papacek, M., Chen, X., Chaudhary, A., Samaras, P., Richter, S., Shikata, H., Messerer, M., Lang, D., Altmann, S., Cyprys, P., Zolg, D.P., Mathieson, T., Bantscheff, M., Hazarika, R.R, Schmidt, T., Dawid, C., Dunkel, A., Hofmann, T., Sprunck, S., Falter-Braun, P., Johannes, F., Mayer,K.F.X, Jürgens, G., Wilhelm, M., Baumbach, J., Grill, E., Schneitz, K., Schwechheimer, C., Kuster, B. (2020) Mass-spectrometry-based draft of the Arabidopsis proteome. Nature. 579(7799):409-414. doi: 10.1038/s41586-020-2094-2.
  7. Shindo, M., Makigawa, S., Matsumoto, K., Iwata, T., Wasano, N., Kano, A., Morita, M.T., Fujii Y. (2020) Essential structural features of (2Z,4E)-5-phenylpenta-2,4-dienoic acid for inhibition of root gravitropism. Phytochemistry. 172:112287. doi: 10.1016/j.phytochem.2020.112287.
  8. Furutani, M.*, Hirano, Y.*, Nishimura, T.*, Nakamura, M., Taniguchi, M., Suzuki, K., Oshida, R., Kondo, C., Sun, S., Kato, K., Fukao, Y., Hakoshima, T., Morita, M.T. (2020) Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nature Commun. 11(1):76. doi: 10.1038/s41467-019-13729-7. (*, equally contributed)
  9. Ohbayashi, I., Huang, S., Fukaki, H., Song, X., Sun, S., Morita, M.T., Tasaka, M., Millar, H., Furutani, M. (2019) Mitochondrial pyruvate dehydrogenase contributes to auxin-regulated organ development. Plant Physiol. 180:896-909. doi: 10.1104/pp.18.01460.
  10. Kimata, E., Kato, T., Higaki, T., Kurihara, D., Yamada, T., Segami, S., Morita, M.T., Maeshima, M., Hasezawa, S., Higashiyama, T., Tasaka, M., Ueda, M. (2019). Polar vacuolar distribution is essential for accurate asymmetric division of Arabidopsis zygotes. PNAS, 116(6):2338-2343. doi: 10.1073/pnas.1814160116
  11. Taniguchi, M., Furutani, M., Nishimura, T., Nakamura, M., Fushita, T., Iijima, K., Baba, K., Tanaka, H., Toyota, M., Tasaka, M., Morita, M.T. (2017) Arabidopsis LAZY1 family plays key role in gravity signaling within statocytes in gravitropism and in branch angle control of roots and shoots. Plant Cell 29: 1984-1999.
  12. Matsuoka, K., Sugawara, E., Aoki, R., Takuma, K., Morita, M.T., Satoh, S., Asahina, M. (2016) Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of Arabidopsis hypocotyls. Plant Cell Physiol. 57: 2620-2631. doi:10.1093/pcp/pcw177
  13. Mori, A., Toyota, M., Shimada, M., Mekata, M., Kurata, T., Tasaka, M., Morita, M.T. (2016) Isolation of new gravitropic mutants under hypergravity conditions. Front. Plant Sci. 7:1443. doi: 10.3389/fpls.2016.01443
  14. Ogawa,T., Mori, A., Igari, K., Morita, M.T., Tasaka, M., Uchida, N. (2016) Efficient in planta detection and dissection of de novo mutation events in the Arabidopsis thaliana disease resistance gene UNI. Plant Cell Physiol. 57: 1123-32. doi:10.1093/pcp/pcw060
  15. Okamoto, K., Ueda, H., Shimada, T., Tamura, K., Koumoto, Y., Tasaka, M., Morita, M.T., Hara-Nishimura, I. (2016) An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems. Plant Signal Behav. 11: e1010947, DOI:10.1080/15592324.2015.1010947
  16. Wang, H., Yang, K., Zou, J., Zhu, L., Xie, Z., Morita, M.T., Tasaka, M., Friml, J., Grotewold, E., Beeckman, T., Vanneste, S., Sack, F., Le, J. (2015) Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat. Commun. 6, Article number: 8822, doi:10.1038/ncomms9822
  17. Okamoto, K., Ueda, H., Shimada, T., Tamura, K., Kato, T., Tasaka, M., Morita, M.T., Hara-Nishimura, I. (2015) Regulation of organ straightening and plant posture by an actin-myosin XI cytoskeleton. Nature Plants 1:Article number: 15031, doi:10.1038/nplants.2015.31
  18. Nakamura, M., Toyota, M., Tasaka, M., Morita, M. T. (2015) Live cell imaging of cytoskeletal and organelle dynamics in gravity-sensing cells in plant gravitropism. Methods Mol. Biol. 1309, 57-69. doi: 10.1007/978-1-4939-2697-8_6.
  19. Taniguchi, M., Nakamura, M., Tasaka, M., Morita, M.T. (2014) Identification of gravitropic response indicator genes in Arabidopsis inflorescence stems. Plant Signal Behav. 9: e29570, doi: 10.4161/psb.29570
  20. Toyota, M., Ikeda, N., Tasaka, M., Morita, M.T. (2014). Centrifuge Microscopy to Analyze the Sedimentary Movements of Amyloplasts. Bio-protocol 4(17): e1229. http://www.bio-protocol.org/e1229
  21. Hashiguchi, Y., Yano, D., Nagafusa, K., Kato, T., Saito, C., Uemura, T., Ueda, T., Nakano, A., Tasaka, M., Morita, M.T. (2014) A unique HEAT repeat-containing protein SHOOT GRAVITROPISM6 is involved in vacuolar membrane dynamics in gravity sensing cells of Arabidopsis inflorescence stem. Plant Cell Physiol. 55:811-822.
  22. Le, J., Liu, X.G., Yang, K.Z., Chen, X.L., Zou, J.J., Wang, H.Z., Wang, M.,Vanneste, S., Morita, M.T., Tasak,. M., Ding, Z.J., Friml, J., Beeckman, T., Sack, F. (2014) Auxin transport and activity regulate stomatal patterning and development. Nat. Commun. 5: Article number:3090.
  23. Toyota, M., Ikeda, N., Sawai-Toyota, S., Kato, T., Gilroy, S., Tasaka, M., Morita, M.T. (2013) Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant J. 76:648-660.
  24. Saito, C., Uemura, T., Awai, C., Tominaga, M., Ebine, K., Ito, J., Ueda, T., Abe, H., Morita M.T., Tasaka, M., Nakano, A. (2011) The occurrence of bulbs, a complex configuration of the vacuolar membrane, is affected by mutations of vacuolar SNARE and phospholipase in Arabidopsis. Plant J. 68: 64-73.
  25. Nakamura, M., Toyota, M., Tasaka, M., Morita, M.T. (2011) An Arabidopsis E3 Ligase SHOOT GRAVITROPISM 9 Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing. Plant Cell 23: 1830-1848.
  26. Ding Z, Ampudia C.S.G., Demarsy E., äangowski ä., Kleine-Vehn J., Fan Y., Morita M.T., Tasaka M., Fankhauser C., Offringa R. and Friml J. (2011) Light-mediated polarization of PIN3 auxin transporter for phototropic response in Arabidopsis. Nat. Cell Biol. 13:447-452.
  27. Toyota, M., Matuda, K., Kakutani, T., Morita, M.T., Tasaka, M. (2010) Developmental changes in crossover frequency in Arabidopsis. Plant J. 65:588-599.
  28. Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J. (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc. Natl. Acad. Sci. 107:22344-22349.
  29. Uemura, T., Morita, M.T., Ebine, K., Okatani, Y., Yano, D., Saito, C., Ueda, T., and Nakano, A. (2010) Vacuolar/prevacuolar compartment Qa-SNAREs, VAM3/SYP22 and PEP12/SYP21 have interchangeable functions in Arabidopsis. Plant J. 64:864-873.
  30. Kato, T., Morita, M.T., Tasaka, M. (2010) Defects in dynamics and functions of actin filament in Arabidopsis caused by the dominant-negative actin fiz1 induced fragmentation of actin filament. Plant Cell Physiol. 51: 333-338.
  31. Zádníková, P., Petrásek, J., Marhavy, P., Raz, V., Vandenbussche, F., Ding, Z., Schwarzerová, K., Morita, M.T., Tasaka, M., Hejátko, J., Van Der Straeten, D., Friml, J., Benková, E. (2010) Role of auxin efflux in apical hook development of Arabidopsis thaliana. Development 37: 607-617.
  32. Hashiguchi, Y., Niihama, M., Takahashi, T., Saito, C., Nakano, A., Tasaka, M., Morita, M.T. (2010) Loss-of-function mutations of retromer large subunits suppress the phenotype of zig mutant that lacks Qb-SNARE VTI11. Plant Cell 22:159-172.
  33. Hamaji, K., Nagira, M., Yoshida, K., Ohnishi, M., Oda, Y., Uemura, T., Goh, T., Sato, M., Morita, M.T., Tasaka, M., Hasezawa, S., Nakano, A., Hara-Nishimura, I., Maeshima, M., Fukaki, H., Mimura, T. (2009) Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol. 50: 2023-2033.
  34. Niihama, M., Takemoto, N., Hashiguchi, Y., Tasaka, M., Morita, M.T. (2009) ZIP genes encode proteins involved in membrane trafficking of the TGN-PVC/vacuoles. Plant Cell Physiol. 50: 2057-2068.
  35. Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S. (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322: 1380-1384.
  36. Ebine, K., Okatani, Y., Uemura, T., Goh, T., Shoda, K., Niihama, M., Morita, M.T., Spitzer, C., Otegui, M.S., Nakano, A., Ueda, T. (2008) A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20:3006-3021.
  37. Morita, M.T., Saito, C., Nakano, A., Tasaka, M. (2007) endodermal-amyloplast less 1 is a novel allele of SHORT-ROOT. Adv. Space Res. 39:1127-1133.
  38. Yamaguchi N., Suzuki M., Fukaki H., Morita, M.T., Tasaka M., Komeda Y. (2007) CRM1/BIG-mediated auxin action regulates Arabidopsis inflorescence development. Plant Cell Physiol. 48:1275-1290.
  39. Morita, M.T., Sakaguchi, K., Kiyose, S., Taira, K., Kato, T., Nakamura, M. Tasaka, M. (2006) A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems. Plant J. 47:619-628.
  40. Kitazawa, D., Hatakeda, Y., Kamada, M., Fujii, N., Miyazawa, Y., Hoshino, A., Iida, S., Fukaki, F., Morita, M.T., Tasaka, M., Suge, H., Takahashi, H. (2005) Shoot circumnutation and winding movements require gravisensing cells. Proc. Natl. Acad. Sci. 102:18742-18747.
  41. Niihama, M., Uemura, T., Saito, C., Nakano, A., Sato, M.H., Tasaka, M. Morita, M.T. (2005) Conversion of functional specificity in Qb-SNARE VTI1 homologues of Arabidopsis. Curr. Biol. 15: 555-560.
  42. Saito C., Kato T., Morita M.T., Tasaka, M. (2005) Amyloplasts and vacuolar membrane dynamics in the living graviperceptive cell of the Arabidopsis inflorescence stem. Plant Cell 17: 548-558.
  43. Surpin, M. ‡, Zheng, H. ‡, Morita, M. T.‡, Saito, C., Avila, E., Blakeslee, J. J., Bandyopadhyay, A., Kovaleva, V., Carter, D., Murphy, A., Tasaka, M., Raikhel, N. (2003) The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell, 15:2885-2899. ‡These authors contributed equally to this research.
  44. Yano, D., Sato, M., Saito, C., Sato, M. H., Morita, M.T., Tasaka, M. (2003) A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc. Natl. Acad. Sci. 100:8589-8594.
  45. Morita, M.T. ‡, Kato, T. ‡, Nagafusa K., Saito, C., Ueda, T., Nakano, A., Tasaka, M. (2002) Involvement of the vacuoles of the endodermis in early process of shoot gravitropism in Arabidopsis. Plant Cell 14:47-56. ‡These authors contributed equally to this research.
  46. Kato, T. ‡, Morita, M.T. ‡, Fukaki, H., Yamauchi, Y., Uehara, M., Niihama, M., Tasaka, M. (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33-46. ‡These authors contributed equally to this research.
  47. Morita, M.T., Kanemori, M., Yanagi, H., Yura, T. (2000) Dynamic interplay between antagonistic pathways controlling σ32 level in Escherichia coli. Proc. Natl. Acad. Sci. 97:5860-5865.
  48. Morita, M.T., Tanaka, Y., Kodama, T.S., Kyogoku, Y., Yanagi, H., Yura, T. (1999) Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes & Dev. 13:655-665.
  49. Morita, M., Kanemori, M., Yanagi, H., Yura, T. (1999). Heat- induced synthesis of σ32 in Escherichia coli: Structural and functional dissection of rpoH mRNA secondary structure. J. Bacteriol. 181:401-410.
  50. Morita, M., Tasaka, M., Fujisawa, H. (1996). Fine structure of the prohead binding domain of the packaging protein of bacteriophage T3 using a hexapeptide, an analog of a prohead binding site. Virology 211:516-524.
  51. Morita, M., Tasaka, M., Fujisawa, H. (1995). Structural and functional domains of the large subunit of the bacteriophage T3 DNA packaging enzyme: Importance of the C-terminal region in prohead binding. J. Mol. Biol. 245:635-644.
  52. Kawarabayashi, Y., Tanaka, A., Ohara, O., Arakawa, T., Oka, M., Kato, H., Morita, M., Fujisawa, H. (1994). A novel method for generating nested deletions using the in vitro bacteriophage T3 DNA packaging system. DNA Research 1:289-296.
  53. Morita, M., Tasaka, M., Fujisawa, H. (1994). Analysis of functional domains of the packaging proteins of bacteriophage T3 by site-directed mutagenesis. J. Mol. Biol. 235:248-259.
  54. Morita, M., Tasaka, M., Fujisawa, H. (1993). DNA packaging ATPase of bacteriophage T3. Virology 193:748-752.

 総説

  1. Kawamoto, N. and Morita, M.T. (2022) Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. New Phytologist. in press.  doi.org/10.1111/nph.18474
  2. Shikata, H. and Denninger, P. (2022) Plant optogenetics: Applications and perspectives. Curr. Opin. Plant Biol. 68:102256. doi.org/10.1016/j.pbi.2022.102256.
  3. Furutani, M. and Morita, M.T. (2021) LAZY1-LIKE-mediated gravity signaling pathway in root gravitropic set-point angle control. Plant Physiol. kiab219, https://doi.org/10.1093/plphys/kiab219
  4. 津川暁、佐野友彦、島弘幸、森田(寺尾)美代、出村拓 2021年「シロイヌナズナ花茎重力屈性の数理モデル解析」Plant Morph. 33: 71-76.
  5. 西村岳志、中村守貴、森田(寺尾)美代 2019年「重力屈性における重力感受とシグナリングのメカニズム」植物の成長調節 54(2): 102-107.

  6. Nakamura, M., Nishimura, T., Morita, M.T. (2019) Bridging the gap between amyloplasts and directional auxin transport in plant gravitropism. Curr. Opin. Plant Biol. 52:54-60. doi: 10.1016/j.pbi.2019.07.005.
  7. Nakamura, M., Nishimura, T., Morita, M.T. (2019) Gravity sensing and signal conversion in plant gravitropism. J. Exp. Bot. 70(14):3495-3506. doi: 10.1093/jxb/erz158.
  8. 古谷将彦、西村岳志、森田(寺尾)美代 2017年 「植物の重力屈性の分子メカニズムー根が地中に潜り茎が空へ向かうしくみ」生物と化学 9月号
  9. Morita M.T., Nakamura, M. (2012) Dynamic behavior of plastids related to environmental response. Curr. Opin. Plant Biol. 15: 722-728.
  10. Hashiguchi, Y., Tasaka, M., Morita, M.T. (2013) Mechanism of higher plant gravity sensing. Am. J. Bot. 100: 91-100.
  11. 豊田正嗣、森田(寺尾)美代、池田憲文、田坂昌生 2012年 「重力感受をライブで視るための新しい顕微鏡技術」Plant Morph. 24: 23-32. 
  12. 森田(寺尾)美代、橋口泰子 2011年 「高等植物の重力感受機構」 細胞工学 30巻第2137-141.
  13. Morita, M.T, Tasaka, M. (June 2010) Tropism. In: ENCYCLOPEDIA OF LIFE SCIENCES  2010, John Wiley & Sons, Ltd: Chichester http://www.els.net/ [DOI: 10.1002/9780470015902.a0022335]
  14. Moirta, M.T. (2010) Directional gravity sensing in gravitropism. Ann. Rev. Plant Biol. 61:706-720.
  15. 豊田正嗣、森田(寺尾)美代 2010年「植物の重力感受機構モデル〜デンプン平衡石仮説〜の再検証」生化学 ミニレビュー 82巻8号 730-734.
  16. 中村守貴、田坂昌生、森田(寺尾)美代 2009年 「高等植物における重力感受の分子機構」生物物理 49号3巻 116-121.
  17. 森田(寺尾)美代 2008年 「重力屈性から解くメンブレントラフィック」蛋白質核酸酵素 53: 2308-2312.
  18. 新濱充、森田(寺尾)美代、田坂昌生 2006年「植物の重力屈性の分子機構」植物の生長調節
  19. Morita, M.T., Tasaka, M. (2004) Gravity sensing and signaling. Curr. Opin. Plant Biol. 7/6: 712-718.
  20. 森田(寺尾)美代、田坂昌生、2003年 「高等植物の重力屈性における重力刺激伝達機構」 宇宙生物科学17.
  21. Kato, T., Morita M.T., Tasaka, M. (2002) Role of endodermal cell vacuoles in shoot gravitropism. J. Plant Growth Regul. 21:113-119.
  22. 森田(寺尾)美代、加藤壮英、田坂昌生、2002年 「植物はどのように重力方向を知るのか」蛋白質核酸酵素 47:1690-1694.
  23. Fujisawa, H., Morita, M. (1997). Phage DNA packaging.  Genes to Cells 2:537-545.
  24. 森田美代、藤沢久雄.(1997)ファージはいかにして自己DNAを選択しパッケージするのか. How do bacteriophages recognize and package their own genome DNA. 蛋白質核酸酵素 42:609-618.

 図書

  1. Kato, T., Toyota, M., Tasaka, M., Morita, M.T. (2014) Mini-history of map-based cloning in Arabidopsis. In Cleaved Amplified Polymorphic Sequences (CAPS) Markers In Plant Biology, Ed. Shavrukov, NOVA Publishers, New York. p. 1-20.
  2. Moirta, M.T., Nakamura, M., Tasaka, M. (2012) Gravity sensing, interpretation, and response. In Biocommunication of Plants, Ed.  Witzany and Baluska, Springer p. 51-66.
  3. Harrison, B.R., Morita, M.T., Masson, P.H., Tasaka, M. (2007) Signal transduction in gravitropism. In Plant Tropism (Blackwell Publishing) p.21- 45.
  4. 森田(寺尾)美代 2006年 「重力屈性における重力感受」 Advanced Biomimetics Series 1プラントミメティックス -植物に学ぶ- (甲斐昌一、森川弘道 監修)NTS , 344-350.
  5. Masson, P.H., Tasaka, M., Morita, M.T., Guan, C., Chen, R., Boonsirichai, K. (2002) Arabidopsis thaliana: A model for the study of root and shoot gravitropism. In The Arabidopsis Book (American Society of Plant Biologists); http://www.aspb.org/publications/arabidopsis/toc.cfm
  6. Yura, T., Kanemori, M., Morita, M.T. (2000) The Heat shock response: Regulation and function. In Bacterial Stress Responses, G. Stortz and R. Hengge-Aronis, Ed. (ASM Press, Washington, D.C.), pp. 3-18.
  7. 藤澤久雄・森田美代.(1997)T3, T7ファージの増殖と遺伝 Proliferation and genetics of bacteriophase T3 and T7.「ウイルス学」畑中正一編集, p. 580-590. 朝倉書店.

その他刊行物

  1. 高校生物教科書 啓林館へ写真の提供
  2. Morita. M.T., Shimada, T. (2014) Edirotial: The Plant Endomembrane System–A Complex Network Supporting Plant Development and Physiology. Plant Cell Physiol. 55 (4): 667-671.
  3. 中村守貴、森田(寺尾)美代 2010年 PhotoBook 植物細胞の知られざる世界(西村幹夫ら監修)
  4. 森田(寺尾)美代、田坂昌生 2007年 重力屈性-重力の感受 遺伝 61:116-117.