Original Paper

  • †Nakayama, K., †Ohashi, R., Shinoda, Y., Yamazaki, M., Abe, M., Fujikawa, A., Shigenobu, S., Futatsugi, A., Noda, M., Mikoshiba, K., Furuichi, T., Sakimura, K., *Shiina, N. (2017) RNG105/caprin1, an RNA granule protein for dendritic mRNA localization, is essential for long-term memory formation. eLife 6:e29677, doi: 10.7554/eLife.29677. (†These authors contributed equally., *Corresponding author)
  • Ohashi, R., Takao, K., Miyakawa, T., *Shiina, N. (2016) Comprehensive behavioral analysis of RNG105 (Caprin1) heterozygous mice: Reduced social interaction and attenuated response to novelty. Sci Rep. 6, 20775,doi: 10.1038/srep20775
  • Tsuboi, D., Kuroda, K., Tanaka, M., Namba, T., Iizuka, Y., Taya, S., Shinoda, T., Hikita, T., Muraoka, S., Iizuka, M., Nimura, A., Mizoguchi, A., Shiina, N., Sokabe, M., Okano, H., Mikoshiba, K., Kaibuchi, K. (2015) Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity. Nat. Neurosci. 18, 698-707.
  • *Shiina, N., Nakayama, K. (2014) RNA granule assembly and disassembly modulated by nuclear factor associated with dsRNA 2 and nuclear factor 45. J. Biol. Chem. doi: 10.1074/jbc.M114.556365.
  • *Shiina, N., Yamaguchi, K., Tokunaga, M. (2010) RNG105 deficiency impairs the dendritic localization of Na+/K+ ATPase subunit isoforms and leads to the degeneration of neuronal networks. J. Neurosci. 30, 12816-12830.
  • *Shiina, N., Tokunaga, M. (2010) RNA granule protein 140 (RNG140), a paralog of RNG105 localized to distinct RNA granules in neuronal dendrites in the adult vertebrate brain. J. Biol. Chem. 285, 24260-24269.
  • *Shiina N., Shinkura K., Tokunaga M. (2005) A novel RNA-binding protein in neuronal RNA granules: Regulatory machinery for local translation. J. Neurosci. 25, 4420-4434.
  • Mimori-Kiyosue Y., Shiina N., Tsukita S. (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865-868.
  • Mimori-Kiyosue Y., Shiina N., Tsukita S. (2000) Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J. Cell Biol. 148, 505-518.
  • Kubo A., Sasaki H., Yuba-Kubo A., Tsukita S., *Shiina N. (1999) Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. J. Cell Biol. 147, 969-980.
  • *Shiina N., Tsukita S. (1999) Mutations at phosphorylation sites of Xenopus microtubule-associated protein 4 affect its microtubule-binding ability and chromosome movement during mitosis. Mol. Biol. Cell 10, 597-608.
  • Shiina N., Gotoh Y., Kubomura N., Iwamatsu A., Nishida E. (1994) Microtubule severing by elongation factor 1 alpha. Science 266, 282-285.
  • Ohta K., Shiina N., Okumura E., Hisanaga S., Kishimoto T., Endo S., Gotoh Y., Nishida E., Sakai H. (1993) Microtubule nucleating activity of centrosomes in cell-free extracts from Xenopus eggs: involvement of phosphorylation and accumulation of pericentriolar material. J Cell Sci. 104, 125-137.
  • Shiina N., Gotoh Y., Nishida E. (1992) A novel homo-oligomeric protein responsible for an MPF-dependent microtubule-severing activity. EMBO J. 11, 4723-4731.
  • Shiina N., Moriguchi T., Ohta K., Gotoh Y., Nishida E. (1992) Regulation of a major microtubule-associated protein by MPF and MAP kinase. EMBO J. 11, 3977-3984.
  • Gotoh Y., Nishida E., Matsuda S., Shiina N., Kosako H., Shiokawa K., Akiyama T., Ohta K., Sakai H. (1991) In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase. Nature 349, 251-254.