
熱・温度の生物学的意義の解明を目指して バイオイメージング解析室 亀井グループ

細胞の熱ショックストレス応答機構

熱・温度は生命現象と密接な関係を持つ重要な要素である。当研 究室では、熱ショック応答における温度応答的な遺伝子発現メカ ニズムを解くことで、生物の温度適応戦略に迫る研究を行ってい る。また、生物にとっての熱・温度について知るためには、生体 物質の物理的な温度特性について理解する必要がある。そのため に、イメージングベースでの温度計測と赤外レーザーによる局所 加熱技術の開発に取り組んでいる。一方、これらの研究成果を基 に、赤外レーザーを用いた局所遺伝子発現技術の改良と応用も行っ ている。

温度の生物学

多くの生物は、熱ストレスから細胞を守る熱ショック応答 機構(上図)を持つ。温度と生物のつながりを明らかにする ための一つの手段として、熱ショック転写因子(HSF)1 に着目し、その温度感知機構と活性化のキネティクスを明ら かにするための研究を始めている。メダカや、メダカ近縁種、 ヒラメ、カエルなど複数の生物種を用いて、比較生物学的視 点から HSF1 活性化の分子機構の解明に取り組んでいる。

また、温度と生物のつながりを調べるうえで、生体物質の 温度物性を知る必要がある。そこで、局所加熱しながら生体 内標的細胞の温度計測ができる顕微鏡技術の開発も行ってい る。これまでに、2波長の蛍光強度の比から温度計測が可能 な蛍光タンパク質プローブ(文献2)を開発した。さらにこ のプローブを使った、高速生体温度イメージング系を局所加 熱顕微鏡系に導入(図 1)した。これを用いて生体物質の熱 物性解析に挑戦している。

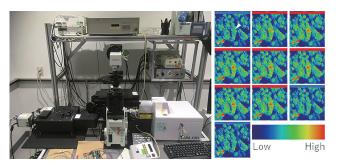


図 1. 生体物質の熱物性解析のための顕微鏡システム 赤外レーザーを照射しながら、標的細胞の温度計測を行う。最高で約1000 fps でのイメージングを行うことができる。

局所遺伝子発現技術とその改良

熱ショック応答を利用して、熱ショックプロモーターの下 流に目的遺伝子を挿入して生物に導入することで、熱ショッ クによる目的遺伝子の発現誘導が可能になる。そこで、顕微

鏡により赤外レーザーを集光照射し生体内の単一細胞を温め ることで、目的の細胞のみで目的遺伝子を発現誘導させる(操 作する) ことができる技術 (Infrared laser evoked gene operator: IR-LEGO 法: 文献 5) を有している。この光で 細胞を操作する技術を用いて、メダカ、ゼブラフィッシュ、 アフリカツメガエル、シロイヌナズナなどのモデル生物に応 用してきた(文献 1, 3, 4)。現在も所外研究者との共同研 究を多数実施し、様々な生物種の研究者と交流している。現 行の IR-LEGO 法にはいくつかの難しさがあり、それを克服 するために、前述の HSF1 研究を通じて IR-LEGO の改良 も進めている。この他にも、自作可能でオープンソースな IR-LEGO システムの開発を進め、IR-LEGO を含めた顕微鏡・ イメージング・光操作技術の普及も進めている。

参考文献

- 1. Hasugata, R., Hayashi, S., Kawasumi-Kita, A., Sakamoto, J., Kamei, Y., Yokoyama, H. (2019). Infrared laser-mediated gene induction at the single-cell level in the regenerating tail of Xenopus laevis tadpoles. Cold Spring Harb. Protoc., Dec 3; 2018(12).
- 2. Nakano, M., Arai, Y., Kotera, I., Okabe, K., Kamei, Y., Nagai, T. (2017). Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response. PLoS One 12, e0172344.
- 3. Okuyama, T., Yokoi, S., Abe, H., Isoe, Y., Suehiro, Y., Imada, H., Tanaka, M., Kawasaki, T., Yuba, S., Taniguchi, Y., Kamei, Y., Okubo, K., Shimada, A., Naruse, K., Takeda, H., Oka, Y., Kubo, T. and Takeuchi, H. (2014). A neural mechanism underlying mating preferences for familiar individuals in medaka fish. Science 343, 91-94
- 4. Shimada, A., Kawasishi, T., Kaneko, T., Yoshihara, H., Yano, T., Inohaya, K., Kinoshita, M., Kamei, Y., Tamura, K. and Takeda, H. (2013). Trunk exoskeleton in teleosts is mesodermal in origin. Nat. Commun. 4, 1639.
- 5. Kamei, Y., Suzuki, M., Watanabe, K., Fujimori, K., Kawasaki, T., Deguchi, T., Yoneda, Y., Todo, T., Takagi, S., Funatsu, T., and Yuba, S. (2009). Infrared laser-mediated gene induction in targeted single cells in vivo. Nat. Methods 6, 79-81.

RMC 教授 亀井 保博