平成23年度共同利用研究一覧

研究種別	課題番号	研究課題	提案代表者 氏名	所属	所属
重点共同利用研究	11-101	発達過程におけるエネルギー代謝物質の動態およびその分子機能の解析	林 良樹	自然科学研究機構	基礎生物学研究所
重点共同利用研究	11-102	Axial stem cells(軸形成幹細胞)の制御による体軸 形成	近藤 寿人	大阪大学	大学院生命機能研究科
重点共同利用研究	11-103	次世代シーケンサーを用いた, 突然変異体の原因 遺伝子同定法の確立	澤 進一郎	熊本大学	大学院自然科学研究科
重点共同利用研究	11-104	脊椎動物の社会性を生み出す脳神経基盤と行動法 則の解明を目指した生医工連携研究の確立	竹内 秀明	東京大学	大学院理学系研究科
重点共同利用研究	11-105	ヒト疾患モデルとしてのメダカ:コンディショナルKO などを使った多面的解析系の確立	谷口 善仁	慶應義塾大学	医学部
重点共同利用研究	11-106	ニューロンのネットワーク構築における細胞極性の 生物学的意義	上野 直人	自然科学研究機構	基礎生物学研究所
モデル生物・技術開 発共同利用研究	11-202	環境生物学の新興モデル生物「エンドウヒゲナガア ブラムシ」の研究者コミュニティ形成とポストゲノム研 究基盤構築	重信 秀治	自然科学研究機構	基礎生物学研究所
モデル生物・技術開 発共同利用研究	11-203	海産ラフィド藻における生理生態特性の分子解析手 法の確立	紫加田 知幸	水産総合研究センター	瀬戸内海区水産研究所
個別共同利用研究	11-301	アジサイの青色花色発現に必須の金属輸送体の機 能解明に関する研究	吉田 久美	名古屋大学	大学院情報科学研究科
個別共同利用研究	11-302	トランスジェニックカエルを用いた細胞死の生物学的 意義の解明	酒巻 和弘	京都大学	大学院生命科学研究科
個別共同利用研究	11-303	ショウジョウバエ母性因子MAMOの標的遺伝子および発現制御の解析	向 正則	甲南大学	理工学部
個別共同利用研究	11-304	カイコバキュロウイルスの初期遺伝子発現ネット ワークのシステム解析	伴戸 久徳	北海道大学	大学院農学研究院
個別共同利用研究	11-305	消化管内胚葉の管形成における細胞動態	福田 公子	首都大学東京	大学院理工学研究科
個別共同利用研究	11-306	マウス卵管における器官の非対称性と細胞極性を つなぐ機構の解析	上村 匡	京都大学	大学院生命科学研究科

	カワカイメン幹細胞分化過程における細胞分裂様式 と骨片骨格形成過程の解明	船山 典子	京都大学	大学院理学研究科
11-308	シナプスの情報伝達調節分子に関する超微形態学 的研究	臼田 信光	藤田保健衛生大学	医学部
11-309	遺伝子改変非ヒト霊長類作出に関する基礎研究	佐々木 えりか	実験動物中央研究所	応用発生学研究部
11-311	トゲウオ科魚類における性染色体転座と種分化	北野 潤	国立遺伝学研究所	新分野創造センター
	植物細胞内におけるRNA移動にかかわる構造体の 解析	渡邊 雄一郎	東京大学	大学院総合文化研究科
11-313	ヒメツリガネゴケにおける高等植物の管状要素分化 制御遺伝子ホモログの機能解析	出村 拓	奈良先端科学技術大学 院大学	バイオサイエンス研究科
11-314	ミヤコグサおよびその根粒菌の遺伝子精密破壊法 の開発・改良	佐伯 和彦	奈良女子大学	理学部
11-315	植物におけるアーバスキュラー菌根共生の分子機 構の解明	上中 弘典	鳥取大学	農学部
11-316	根粒菌感染過程での植物細胞内膜系の動態	松岡 健	九州大学	大学院農学研究院
11-317	TILLING法による成長ホルモン受容体/ソマトラクチン受容体ノックアウトメダカの作出	深町 昌司	日本女子大学	理学部
11-318	メダカコンジェニック系統の高速作成システムの動作 確認	新屋 みのり	情報・システム研究機構	国立遺伝学研究所
11-319	遺伝子改変メダカの作製、および無尾両生類におけるホルモン応答性アクアポリンの遺伝子領域の解析	鈴木 雅一	静岡大学	理学部
11-320	メダカの色素胞発生におけるSoxファミリーの機能解析	橋本 寿史	名古屋大学	生物機能開発利用研究センター
11-321	下等脊椎動物における中胚葉組織形成の機構解明	内山 英穂	横浜市立大学	大学院生命ナノシステム科学研 究科
11-322	ステロイドホルモン受容体の分子進化の解析	勝 義直	北海道大学	大学院理学研究院
	生殖系列を制御するアンドジェン受容体の活性化を 制御するセロトニン合成酵素の機能解析	福元 隆浩	北海道大学	遺伝子病制御研究所感染癌研究センター
11-324	マウス雌性生殖腺の遺伝子発現に対する周生期性 ホルモン投与の影響	佐藤 友美	横浜市立大学	大学院生命ナノシステム科学研 究科
11-325	エストロゲンによるメダカ雄生殖腺の分化転換機構の解析	小林 亨	静岡県立大学	環境科学研究所
11-326	アンドロゲン様物質により誘導される両生類精巣分 化過程における遺伝子発現解析	高瀬 稔	広島大学	大学院理学研究科
	11-307 11-308 11-309 11-311 11-312 11-313 11-314 11-315 11-316 11-317 11-318 11-319 11-320 11-321 11-322 11-323 11-324 11-325	11-308 シナプスの情報伝達調節分子に関する超微形態学的研究 11-309 遺伝子改変非とト霊長類作出に関する基礎研究 11-311 トゲウオ科魚類における性染色体転座と種分化 11-312 植物細胞内におけるRNA移動にかかわる構造体の解析 11-313 とメツリガネゴケにおける高等植物の管状要素分化制御遺伝子ホモログの機能解析 11-314 ミヤコグサおよびその根粒菌の遺伝子精密破壊法の開発・改良 11-315 植物におけるアーバスキュラー菌根共生の分子機構の解明 11-316 根粒菌感染過程での植物細胞内膜系の動態 11-317 TILLING法による成長ホルモン受容体/ソマトラクチン受容体/ツクアウトメダカの作出 11-318 メダカコンジェニック系統の高速作成システムの動作確認 11-319 遺伝子改変メダカの作製、および無尾両生類におけるホルモン応答性アクアポリンの遺伝子領域の解析 11-320 メダカの色素胞発生におけるSoxファミリーの機能解析 11-321 下等脊椎動物における中胚葉組織形成の機構解明 11-322 ステロイドホルモン受容体の分子進化の解析 11-323 生殖系列を制御するアンドジェン受容体の活性化を制御するセロトニン合成酵素の機能解析 11-324 マウス雌性生殖腺の遺伝子発現に対する周生期性ホルモン投与の影響 11-325 エストロゲンによるメダカ雄生殖腺の分化転換機構の解析 11-326 アンドロゲン様物質により誘導される両生類精巣分	11-307 と骨片骨格形成過程の解明 11-308 シナプスの情報伝達調節分子に関する超微形態学的研究 11-309 遺伝子改変非とト霊長類作出に関する基礎研究 佐々木えりか11-311 トゲウオ科魚類における性染色体転座と種分化 北野 潤糖物細胞内におけるRNA移動にかかわる構造体の解析 11-312 植物細胞内における高等植物の管状要素分化制御遺伝子ホモログの機能解析 11-314 にメッリガネゴケにおける高等植物の管状要素分化制御遺伝子ホモログの機能解析 11-315 植物におけるアーバスキュラー菌根共生の分子機構の解明 11-316 根粒菌感染過程での植物細胞内膜系の動態 上中 弘典 11-316 根粒菌感染過程での植物細胞内膜系の動態 松岡健 11-317 TILLING法による成長ホルモン受容体ノソマトラクチン受容体ノックアウトメダカの作出 深町 昌司 メダカコンジェニック系統の高速作成システムの動作確認 新屋みのり 遺伝子改変メダカの作製、および無尾両生類におけるホルモン応答性アクアポリンの遺伝子領域の解析 統木 雅一11-320 メダカの色素胞発生におけるSoxファミリーの機能解析 内山 英穂 11-321 下等脊椎動物における中胚葉組織形成の機構解明 内山 英穂 11-322 ステロイドホルモン受容体の分子進化の解析 勝義直 11-323 制御するセロトニン合成酵素の機能解析 マウス雌性生殖腺の遺伝子発現に対する周生期性 ホルモン投与の影響 により誘導される両生類精巣分 宮藤 た	11-307 と骨片骨格形成過程の解明 11-308 シナブスの情報伝達調節分子に関する超微形態学 白田 信光 藤田保健衛生大学 的研究 11-309 遺伝子改変非とト霊長類作出に関する基礎研究 佐々木えりか 実験動物中央研究所 11-311 トゲウオ科魚類における性染色体転座と種分化 北野 潤 国立遺伝学研究所 11-312 植物細胞内におけるRNA移動にかかわる構造体の 解析 速递 雄一郎 東京大学 11-313 制御遺伝子ホモログの機能解析 法がつけれる高等植物の管状要素分化 制御遺伝子ホモログの機能解析 佐伯 和彦 奈良先端科学技術大学院大学 11-314 植物におけるアーバスキュラー菌根共生の分子機 情の解明 11-316 根粒菌感染過程での植物細胞内膜系の動態 松岡 健 九州大学 11-316 根粒菌感染過程での植物細胞内膜系の動態 松岡 健 九州大学 11-317 TILLING法による成長ホルモン受容体/ソマトラクチン受容体/ツウアウトメダカの作出 メダカコンジェニック系統の高速作成システムの動作 確認 遺伝子改変メダカの作製、および無尾両生類におけ 金ホルモシの密体アクアポリンの遺伝子領域の解析 11-320 メダカの色素胞発生におけるSoxファミリーの機能解析 11-321 下等脊椎動物における中胚葉組織形成の機構解明 内山 英穂 横浜市立大学 11-321 下等脊椎動物における中胚葉組織形成の機構解明 内山 英穂 横浜市立大学 11-322 ステロイドホルモン受容体の分子進化の解析 勝義直 北海道大学 11-322 ステロイドホルモン受容体の分子進化の解析 勝義直 北海道大学 11-324 マウス雌性生殖腺の遺伝子発現に対する周生期性 ホルモン投与の影響 11-324 ホルモン投与の影響 11-325 ストロゲンによるメダカ雄生殖腺の分化転換機構 小林 亨 静岡県立大学 アンドロゲン様物質により誘導される両生類精巣分 す瀬 6会

個別共同利用研究	11-327	ヒメツリガネゴケ光環境応答機構の分光学的解析	岩井 優和	理化学研究所	基幹研究所
個別共同利用研究	11-328	「カメレオン・ナノ」トランスジェニックマウスを用いた Ca ²⁺ 依存性分泌機能の2光子可視化解析	根本 知己	北海道大学	電子科学研究所
個別共同利用研究	11-329	着床期付近のマウス胚発生の経時観察	高岡 勝吉	大阪大学	大学院生命機能研究科
個別共同利用研究	11-330	植物細胞における細胞板位置決定機構の解明	園部 誠司	兵庫県立大学	大学院生命理学研究科
個別共同利用研究	11-331	多光子励起顕微鏡を用いたがん幹細胞、骨細胞と 骨軟骨細胞のインビボイメージング	今村 健志	愛媛大学	大学院医学系研究科
個別共同利用研究	11-332	環境依存的な染色体放出によるアブラムシの雄産 性機構の解析	三浦 徹	北海道大学	大学院地球環境科学研究院
個別共同利用研究	11-333	アブラムシ多型発現のエピジェネティックな調節機構の解析	佐々木 哲彦	玉川大学	学術研究所
個別共同利用研究	11-334	ミトコンドリア機能の多様性と病態変化の解析	臼田 信光	藤田保健衛生大学	医学部
個別共同利用研究	11-335	Gene body メチル化の生物学的意義と分子機構の 解明	鈴木 美穂	愛知県心身障害コロ ニー	発達障害研究所
個別共同利用研究	11-336	IR-LEGO顕微鏡による脈管系内皮細胞での遺伝子 発現系の樹立	木村 英二	岩手医科大学	医学部
個別共同利用研究	11-337	GnRHニューロンおよびキスペプチン神経系の TILLINGによる機能阻害による研究	岡 良隆	東京大学	大学院理学系研究科
個別共同利用研究	11-338	Mathematical morphology による組織切片像の新しい定量的評価手法の開発	尾田 正二	東京大学	大学院新領域創成科学研究科
個別共同利用研究	11-339	外部形態の背側化を制御するメダカzic1/zic4の発現境界維持機構の解析	塚原 達也	東京大学	大学院理学系研究科
個別共同利用研究	11-340	R-Avr認識後の細胞間防御応答シグナルの解析	別役 重之	東京大学	教養学部
個別共同利用研究	11-341	神経線維腫症I型モデルメダカの試み	國仲 慎治	慶應義塾大学	医学部
個別共同利用研究	11-342	TILLING法によるプロゲスチン膜受容体遺伝子変異 メダカの作出	徳元 俊伸	静岡大学	理学部
個別共同利用研究	11-343	赤外レーザー遺伝子発現顕微鏡(IR-REGO)を用いた植物の光屈性の解析	長谷 あきら	京都大学	大学院理学研究科
個別共同利用研究	11-344	ライブイメージングとIR-LEGOシステムで迫る植物メリステムの制御動態	植田 美那子	奈良先端科学技術大学 院大学	バイオサイエンス研究科
個別共同利用研究	11-345	赤外線レーザー顕微鏡を用いたメダカにおける温度 依存的性決定機構の解析	北野 健	熊本大学	大学院自然科学研究科
· · · · · · · · · · · · · · · · · · ·					

			ī.		
個別共同利用研究	11-346	無脊椎動物神経系のEST解析とペプチドーム解析による新規神経ホルモンの解明	吉国 通庸	九州大学	大学院農学研究院
個別共同利用研究	11-347	イネの機能ゲノム学的解析のための効率的なトラン スポゾンタグラインの育成と単離法の開発	前川 雅彦	岡山大学	資源植物科学研究所
個別共同利用研究	11-348	心拍依存性、力刺激依存性 miR-21 による心臓弁 形成の制御機構	小椋 利彦	東北大学	加齢医学研究所
個別共同利用研究	11-349	Torキナーゼを介した細胞周期制御の細胞老化過程 への関与	松浦 彰	千葉大学	大学院融合科学研究科
個別共同利用研究	11-350	メタノール資化性酵母のTorシグナル経路について の研究	千葉 靖典	産業技術総合研究所	糖鎖医工学研究センター
個別共同利用研究	11-351	イネの発生・分化を制御する分子遺伝学的研究	平野 博之	東京大学	大学院理学系研究科
個別共同利用研究	11-352	植物オートファジーによるペルオキシソームの選択的分解機構	白須 賢	理化学研究所	植物科学研究センター
個別共同利用研究	11-353	出芽酵母前胞子膜形成過程のリン酸化・脱リン酸化 による制御機構の解明	舘川 宏之	東京大学	大学院農学生命科学研究科
個別共同利用研究	11-354	細胞増殖におけるオートファジーの役割解明	大隅 良典	東京工業大学	フロンティア研究機構
個別共同利用研究	11-355	短日植物イネの開花統御機構	寺田 理枝	名城大学	農学部
個別共同利用研究	11-356	ゼブラフィッシュ中枢神経再生・修復分子の活性化機構に関する研究	杉谷 加代	金沢大学	医薬保健研究域
個別共同利用研究	11-357	メダカ突然変異体を用いたアリールスルファターゼ の形態形成における機能の解析	中坪 敬子	広島大学	大学院理学研究科
個別共同利用研究	11-358	アリ類の長期間にわたる大量の精子貯蔵メカニズム とその進化の解明	後藤 彩子	琉球大学	農学部
個別共同利用研究	11-359	メダカミュータント、Oot、の原因遺伝子の同定	石川 裕二	放射線医学総合研究所	放射線防護研究センター
個別共同利用研究	11-360	環境メタゲノムの情報学的研究	高見 英人	海洋研究開発機構	極限環境生物圏研究センター
個別共同利用研究	11-361	メダカをモデルとした魚類の変態に関する研究	横井 勇人	東北大学	大学院農学研究科
個別共同利用研究	11-362	アサガオにおけるストレス応答花成の遺伝子制御	和田 清俊	新潟大学	理学部
個別共同利用研究	11-363	マウス咽頭嚢発生における遺伝子発現制御機構の 研究	大久保 直	北里大学	医学部
個別共同利用研究	11-364	改変型Ptprzノックインマウスの作出とその機能解析	渡邊 利雄	奈良女子大学	大学院人間文化研究科
個別共同利用研究	11-365	モデル小型魚類利用によるシアル酸代謝とその機 能解明研究	北島 健	名古屋大学	生物機能開発利用研究センター
個別共同利用研究	11-366	メダカ骨形成突然変異体の原因遺伝子の同定	猪早 敬二	東京工業大学	大学院生命理工学研究科
			•	•	-

個別共同利用研究	11-367	養殖魚類のゲノム育種研究	坂本 崇	東京海洋大学	海洋科学部
個別共同利用研究		ミヤコグサおよびダイズにおける開花調節機構の解析	瀬戸口 浩彰	京都大学	大学院人間·環境学研究科
個別共同利用研究	11-369	メダカの生殖細胞の培養, 保存および保存細胞から の個体作成技術の開発	酒井 章衣	兵庫県立大学	大学院生命理学研究科
個別共同利用研究	11-370	キジラミ菌細胞のトランスクリプトーム解析	中鉢 淳	東京工業大学	大学院生命理工学研究科
個別共同利用研究	11-371	新生児期化学物質暴露による甲状腺ホルモン系攪 乱作用の分子機構の解明	藤本 成明	広島大学	原爆放射線医科学研究所
個別共同利用研究	11-372	ポジショナルクローニング法を用いた突然変異原因 遺伝子および人工遺伝子導入部位の検索	木下 政人	京都大学	大学院農学研究科
個別共同利用研究	11-373	トンボの体色変化・体色多型に関わる色素の解析	深津 武馬	独立行政法人産業技術 総合研究所	生物プロセス研究部門
個別共同利用研究	11-374	マウス初期胚を用いた発生過程における細胞動態 の画像解析技術の開発	小林 徹也	東京大学	生産技術研究所
個別共同利用研究	11-375	サル大脳新皮質における領野特異性・回路特異性 規定因子の探索	郷 康広	京都大学	霊長類研究所
個別共同利用研究	11-376	ナノ粒子の表面修飾と細胞侵入量依存性に関する 研究	松井 康人	京都大学	大学院工学研究科
個別共同利用研究	11-377	タンパク質架橋化酵素ファミリー遺伝子産物の生理的意義の解明	人見 清隆	名古屋大学	大学院生命農学研究科
個別共同利用研究	11-378	メダカ脳におけるアンドロゲン受容体の機能と局在 の解明	坂本 浩隆	岡山大学	大学院自然科学研究科
個別共同利用研究	11-379	シロアリ類における化学的防衛の進化の解明	北條 優	琉球大学	熱帯生物圏研究センター
個別共同利用研究	11-380	深海性二枚貝と化学合成細菌の共生系における遺 伝子発現解析	吉田 尊雄	海洋研究開発機構	海洋•極限環境生物圏領域
個別共同利用研究	11-381	TORC1キナーゼによるタンパク質リン酸化シグナルカスケードの解析	丑丸 敬史	静岡大学	理学部
個別共同利用研究	11-382	再生組織可視化トランスジェニックメダカを用いた再 生因子スクリーニングモデルの開発	出口 友則	産業技術総合研究所	健康工学研究部門
個別共同利用研究	11-383	プロバイオティクス乳酸菌Lactobacillus gasseriの抗 菌ペプチド(バクテリオシン)の作用発現メカニズム の解明	齋藤 忠夫	東北大学	大学院農学研究科
個別共同利用研究	11-384	アフリカツメガエルを用いた初期胚発生における(プロ)レニン受容体の分子発生生物学研究	鈴木 文昭	岐阜大学	応用生物科学部

個別共同利用研究	11-385	植物の環境感覚システム解明のための網羅的遺伝 子発現解析	長谷 あきら	京都大学	大学院理学研究科
個別共同利用研究	11-386	GnRH2ニューロン局所破壊による行動学的解析	岡 良隆	東京大学	大学院理学系研究科
個別共同利用研究	11-387	IR-LEGOを用いた根の細胞間シグナル伝達機構の解析	中島 敬二	奈良先端科学技術大学 院大学	バイオサイエンス研究科
個別共同利用研究	11-388	哺乳類概日リズムの中枢組織における情報伝達と 対称性の研究	沼野 利佳	豊橋技術科学大学	エレクトロニクス先端融合領域
個別共同利用研究	11-389	COPII小胞輸送異常により引き起こされる遺伝子発 現変動解明のための網羅的発現解析	中川 強	島根大学	総合科学研究支援センター
研究会	11-401	生命情報科学若手の会 第3回研究会	岩崎 渉	東京大学	大気海洋研究所
研究会	11-402	The 1st Japan-Taiwan Joint Meeting on Protein Phosphatases	的崎 尚	神戸大学	大学院医学研究科
研究会	11-403	遺伝子機能解析の最先端-ZFNおよびTALENを用いた遺伝子改変の実際-	山本 卓	広島大学	大学院理学研究科
研究会	11-404	微細藻類の潜在力解明へ向けた生態および細胞内 制御機構の統合的研究	大西 紀和	自然科学研究機構	基礎生物学研究所
研究会	11-405	サンゴ・褐虫藻研究連絡会議	皆川 純	自然科学研究機構	基礎生物学研究所
研究会	11-406	第9回クラミドモナス・ワークショップ	皆川 純	自然科学研究機構	基礎生物学研究所
大型スペクトログラフ 共同利用実験	11-501	マウス皮膚における紫外線誘発突然変異の作用スペクトル解析:皮膚特異的変異誘発抑制応答の機能解明	池畑 広伸	東北大学	大学院医学系研究科
大型スペクトログラフ 共同利用実験	11-502	南極湖沼に棲息する藻類の光合成波長依存特性に 関する研究	田邊 優貴子	東京大学大学院	新領域創成科学研究科
大型スペクトログラフ 共同利用実験	11-503	メダカにおいて交尾前生殖隔離行動を誘発する光波 長の同定	深町 昌司	日本女子大学	理学部
大型スペクトログラフ 共同利用実験	11-504	機能性材料の開発と評価法確立を目指した分光照 射実験及びレーザー照射実験	西本 右子	神奈川大学	理学部
大型スペクトログラフ 共同利用実験	11-506	魚類細胞における光応答メカニズム	藤堂 剛	大阪大学	大学院医学系研究科
大型スペクトログラフ 共同利用実験	11-507	光屈性の光量反応曲線に見られる多相性の波長依 存性	飯野 盛利	大阪市立大学	大学院理学研究科
大型スペクトログラフ 共同利用実験	11-508	イカダケイソウの光感受性	園部 誠司	兵庫県立大学	大学院生命理学研究科

大型スペクトログラフ 共同利用実験	11-509	紫外線単独、ならびに化学物質共存下での突然変 異・DNA損傷誘起に関する研究	有元 佐賀惠	岡山大学	大学院医歯薬学総合研究科
大型スペクトログラフ 共同利用実験	11-510	海産植物プランクトンにおける発芽と日周鉛直移動 の光制御機構に関する研究	紫加田 知幸	水産総合研究センター	瀬戸内海区水産研究所
DSLM共同利用実験		DSLM顕微鏡を用いた小型動物におけるCa ²⁺ 動態の可視化	永井 健治	北海道大学	電子科学研究所
DSLM共同利用実験	11-602	メダカトランスジェニック系統を用いた腎発生の解析	越田 澄人	東京大学	大学院理学系研究科
DSLM共同利用実験	11-603	細胞性粘菌の子実体形成における時空間の動態解 析	澤井 哲	東京大学	大学院総合文化研究科
DSLM共同利用実験	11-604	ホヤ幼生形態形成過程の全細胞トラッキング	堀田 耕司	慶應義塾大学	理工学部
DSLM共同利用実験	11-605	アメーバ運動に伴う細胞膜ダイナミクス	園部 誠司	兵庫県立大学	大学院生命理学研究科
DSLM共同利用実験	11-606	メダカのリンパ管発生過程のライブイメージング	出口 友則	産業技術総合研究所	健康工学研究部門
DSLM共同利用実験	11-607	マウス初期胚での生体エネルギー分布の観察	山本 正道	群馬大学	先端科学研究指導者育成ユニット
DSLM共同利用実験	11-608	細胞性粘菌における子実体の伸長機構の解析	上田 昌宏	大阪大学	大学院生命機能研究科
次世代DNAシーケン サー共同利用実験	11-701	バキュロウイルス感染細胞におけるウイルス・宿主 遺伝子発現動態の解析	伴戸 久徳	北海道大学	大学院農学研究院
次世代DNAシーケン サー共同利用実験	11-702	細胞性粘菌のオーガナイザー形成と細胞分化にか かわる遺伝子の同定	福澤 雅志	弘前大学	農学生命科学部
次世代DNAシーケン サー共同利用実験	11-703	不活性クロマチンを維持できないイネ系統における 新規トランスポゾン転移の探索	土生 芳樹	農業生物資源研究所	ゲノム機能改変研究ユニット
次世代DNAシーケン サー共同利用実験	11-704	体色変化を引き起す共生細菌のゲノム解析、ならび に体色変化にともなう宿主アブラムシの網羅的遺伝 子発現解析	土田 努	富山大学	
次世代DNAシーケン サー共同利用実験		軟骨、性分化における生物種間でのSOX9の標的遺伝子の比較解析	浅原 弘嗣	東京医科歯科大学	大学院医歯学総合研究科
次世代DNAシーケン サー共同利用実験	11-707	Candidatus Helicobactar heilmanniiのゲノム解析	松井 英則	北里大学	北里生命科学研究所
次世代DNAシーケン サー共同利用実験	11-708	有袋類の性分化遺伝子の網羅的解析	颯田 葉子	総合研究大学院大学	先導科学研究科
次世代DNAシーケン サー共同利用実験		脈管障害等臓器障害の起点となる代謝異常症の遺 伝子解析	瀬藤 光利	浜松医科大学	分子イメージング先端研究セン ター
次世代DNAシーケン サー共同利用実験	11-710	食虫植物の消化酵素遺伝子同定および葉形態形成 遺伝子群の単離	長谷部 光泰	自然科学研究機構	基礎生物学研究所

					,
次世代DNAシーケン サー共同利用実験		高等植物単膜系オルガネラ形成の制御遺伝子群の 迅速同定	林 誠	自然科学研究機構	基礎生物学研究所
次世代DNAシーケン サー共同利用実験	11-712	サル視覚野における活動依存的遺伝子の同定	渡我部 昭哉	自然科学研究機構	基礎生物学研究所
次世代DNAシーケン サー共同利用実験	11-713	RNA-seqによる根粒原基形成に関与する遺伝子の 網羅的同定	寿崎 拓也	自然科学研究機構	基礎生物学研究所
次世代DNAシーケン サー共同利用実験	11-714	次世代シーケンサーを用いたシロイヌナズナEMS突 然変異体原因遺伝子の迅速同定法の開発	立松 圭	自然科学研究機構	基礎生物学研究所
次世代DNAシーケン サー共同利用実験	11-715	クロオオアリの社会行動の分子基盤研究のための ゲノムおよびRNA-seq解析	尾崎 まみこ	神戸大学	大学院理学研究科
次世代DNAシーケン サー共同利用実験	11-716	岡山県餘慶寺本尊千手観音像内部から発見された 江戸時代初期籾米のDNA解析	中西 徹	就実大学	薬学部
次世代DNAシーケン サー共同利用実験	11-717	二次共生成立機構解明のためのミドリゾウリムシの 全ゲノム塩基配列の解読	藤島 政博	山口大学	大学院理工学研究科
次世代DNAシーケン サー共同利用実験		分散型動原体型染色体におけるセントロメアDNAの 同定	日下部 宜宏	九州大学	大学院農学研究院
次世代DNAシーケン サー共同利用実験	11-719	Study on the epigenetic factors acting downstream of DNA methylation using Arabidopsis mutants	西村 泰介	名古屋大学	生物機能開発利用研究センター
次世代DNAシーケン サー共同利用実験	11-720	Profiling of long non-coding RNA in Drosophila germline stem cell lineage	甲斐 歳恵	Temasek Lifesciences Laboratory	
次世代DNAシーケン サー共同利用実験	11-721	Identification of the YVE and MS07 genes which controls chlorophyll development and organ formation in shoot apex,respectively.	KIM, Gyung-tae	Dong-A University	Department of Molecular Biotechnology
次世代DNAシーケン サー共同利用実験	11-722	ゼブラフィッシュ側線神経の細胞集団における単一 細胞遺伝子発現ゆらぎの解析	塚原 達也	東京大学	大学院理学系研究科
次世代DNAシーケン サー共同利用実験	11-723	昆虫類における社会組織化の分子機構とその進化 過程	三浦 徹	北海道大学	大学院地球環境科学研究院
次世代DNAシーケン サー共同利用実験		倍数体化に伴う alternative splicing の変化に関する 解析	塚谷 裕一	東京大学	大学院理学系研究科
次世代DNAシーケン サー共同利用実験	11-725	「次世代高速シーケンサーSOLiDシステムを用いた、変異体1と野生株におけるストレス応答性アンチセンスRNAの生成量の比較」	関原明	理化学研究所	植物科学研究センター
次世代DNAシーケン サー共同利用実験	11-726	新規な遺伝形質獲得機構の解明	田端 和仁	東京大学	大学院工学系研究科

次世代DNAシーケン サー共同利用実験		半翅目昆虫と共生細菌の相互作用に関する網羅的 遺伝子発現解析	深津 武馬	産業技術総合研究所	生物プロセス研究部門
次世代DNAシーケン サー共同利用実験		次世代シーケンサーによるミヤコグサ共生変異体原 因遺伝子の迅速同定	川口 正代司	自然科学研究機構	基礎生物学研究所
次世代DNAシーケン サー共同利用実験	11-729	ヒメツリガネゴケのリプログラミングを制御する分子 機構の解明	玉田 洋介	自然科学研究機構	基礎生物学研究所
次世代DNAシーケン サー共同利用実験		カメの甲の新規形態パターンをもたらした発生機構の変化	入江 直樹	理化学研究所	発生・再生科学総合研究セン ター
次世代DNAシーケン サー共同利用実験	11-731	海産珪藻における光発芽のトランスクリプトーム解 析	紫加田 知幸	水産総合研究センター	瀬戸内海区水産研究所
次世代DNAシーケン サー共同利用実験	11-732	アリ類の長期間にわたる大量の精子貯蔵メカニズム とその進化の解明	後藤 彩子	琉球大学	農学部
次世代DNAシーケン サー共同利用実験	11-733	コンロンソウ(Cardamine leucantha)における3成長相 メリステムの比較トランスクリプトーム解析	工藤 洋	京都大学	生態学研究センター
次世代DNAシーケン サー共同利用実験	11-734	次世代シーケンサーによる系統解析の革新	西山 智明	金沢大学	学際科学実験センター
次世代DNAシーケン サー共同利用実験		次世代シークエンサーを用いた、珪藻フェオダクチラムおよび緑藻クラミドモナスの環境適応に関わる遺伝子の探索	皆川 純	自然科学研究機構	基礎生物学研究所
次世代DNAシーケン サー共同利用実験	11-736	アノールトカゲにおける複合適応形質としての温度 適応分化の遺伝的基盤の解明	牧野 能士	東北大学	大学院生命科学研究科
次世代DNAシーケン サー共同利用実験	11-737	カブトムシの角(ツノ)形成遺伝子群の単離	新美 輝幸	名古屋大学	大学院生命農学研究科
次世代DNAシーケン サー共同利用実験	11-738	性的二型と闘争・求愛行動の進化	松尾 隆嗣	東京大学	大学院農学生命科学研究科
次世代DNAシーケン サー共同利用実験		ミヤコグサおよびダイズ野生種における開花調節機構の解析	瀬戸口 浩彰	京都大学	大学院人間•環境学研究科
次世代DNAシーケン サー共同利用実験	11-740	マイマイカブリのゲノムと適応形態遺伝子	曽田 貞滋	京都大学	大学院理学研究科
次世代DNAシーケン サー共同利用実験	11-741	棘皮動物プルテウス幼生進化に関する研究	和田 洋	筑波大学	大学院生命環境科学研究科
次世代DNAシーケン サー共同利用実験	11-742	送粉適応した協調的な花形質の進化:キスゲ属における遺伝子基盤とその分子進化の解明	大西 梢	九州大学	大学院理学研究院
次世代DNAシーケン サー共同利用実験	11-743	寄生植物コシオガマの寄生形質獲得に関わる遺伝 子の同定	吉田 聡子	理化学研究所	植物科学研究センター

次世代DNAシーケン サー共同利用実験		東アフリカ3大湖産シクリッドの網羅的ゲノム決定と その比較	岡田 典弘	東京工業大学	大学院生命理工学研究科
次世代DNAシーケン サー共同利用実験	11-745	DNAトランスポゾンを用いた逆遺伝学的手法による イネ遺伝子破壊系統の構築	栂根 一夫	自然科学研究機構	基礎生物学研究所
次世代DNAシーケン サー共同利用実験	11-//16	次世代DNAシーケンサーを用いた養殖魚類のゲノム育種研究	成瀬 清	自然科学研究機構	基礎生物学研究所