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We are studying biological phenomena using mathematical
models. This method gives us an integrative understanding
of the behavior of complex systems in biology including
gene regulatory networks. 

Mathematical models are especially useful in
understanding pattern formation in development. The study
of the mechanisms responsible for morphological
differences between species is an important research focus
of current developmental biology. 

Ⅰ. Structure of regulatory networks and
diversity of gene expression patterns

The complexity of gene regulatory networks is considered
responsible for the diversity of cells. Different types of cells,
characterized by the expression patterns of genes, are
produced in early development through the dynamics of
gene activities based on the regulatory network. However,
very little is known about the relationship between the
structure of regulatory networks and the dynamics of gene
activities. 

In this study I introduce the new idea of "steady state
compatibility," by which the diversity of possible gene
activities can be determined from the topological structure
of gene regulatory networks. The basic premise is very
simple: the activity of a gene should be a function of the
controlling genes. Thus a gene should always show unique
expression activity if the activities of the controlling genes
are unique. Based on this, the maximum possible diversity
of steady states is determined using only information
regarding regulatory linkages and without knowing the
regulatory functions of genes. 

Using the concept of "steady state compatibility," three
general properties of the relationship between the topology
of regulatory networks and the maximum number of steady
states can be derived (Figure 2). (A) Cascade structures in
regulatory networks do not increase the number of possible
steady states (Figure 2a). (B) Loop structures in networks
are necessary to generate multiple steady states. The number
of separated loops increases the maximum diversity of
steady states (Figure 2b). (C) Multiple loops that are
connected by sharing the same genes do not increase the
maximum diversity of steady states (Figure 2c). 

The method was applied to a gene regulatory network
responsible for early development in a sea urchin species. A
set of important genes responsible for generating diversities
of gene activities was derived based on the concept of
compatibility of steady states. 
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Figure 1. An intuitive explanation of "steady state compatibility". (a) An
example of the regulatory links of a mono-directional loop with three
genes. (b) Another example of the regulatory links of a bi-directional
loop with three genes. (c) The shaded domains show the region where
other steady states should not appear except for the original point (0,0,0)
and (1,1,1)based on the network in (a). The network (a) has two steady
states at maximum. (d) The network (b) determines the different shapes
of the domains of no-steady-state except for the points (0,0,0), (0,1,1),
(1,0,1) and (1,1,0). This network allows four steady states at maximum. 

Figure 2. General properties showing the relationships between the
structure of regulatory networks and the maximum diversity of steady
states. 

Figure 3. Analysis of an actual gene network responsible for the early
development of a sea urchin species. (a) The network is simplified from
the one of Fig. 3 in Davidson et al. (2002). The maximum diversity
generated from this network is determined by the analysis as 64. (b) All
of the "reduced observation point" ROP genes are derived. At least one
of the ROPs should change its activities in the alternative steady states.

Note: Those members appearing in the above list twice under different titles are members whose title changed during 2008. The former title is
indicated by an asterisk (*)
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Ⅱ. Predicting regulation of the phosphorylation
cycle of KaiC clock protein using mathematical
analysis

Cyanobacteria are the simplest organisms exhibiting
circadian rhythms. In the bacterium, clock genes kaiA, kaiB
and kaiC have been characterized as the indispensable clock
regulators. KaiC plays a central role and exhibits rhythms in
transcription, translation and phosphorylation status under
continuous illumination conditions. The other clock proteins
KaiA and KaiB modulate KaiC autophosphorylation: KaiA
enhances autophosphorylation of KaiC, and KaiB inhibits
this action of KaiA. It was recently revealed that periodic
oscillation of the phosphorylation level of KaiC persists
even under continuous dark conditions, where transcription
and translation have almost ceased. The KaiC
phosphorylation cycle was reconstituted even in vitro, thus
confirming that the interaction between Kai proteins
generates the cycle, although the specific mechanism that
drives the clock remains unclear.

Using mathematical models, we investigated the
mechanism for the transcription-less KaiC phosphorylation
cycle.  We developed a simple model based on possible
KaiC behavior suggested by previous experimental studies.
In the model, the KaiC-KaiA complex formation followed
by a decrease in free KaiA molecules may attenuate the
KaiC phosphorylation rate, and it may acts as negative
feedback in the system. However, our mathematical analysis
proved that simple dynamics based on the experimentally
suggested model never show the KaiC phosphorylation
cycle.  

We then developed the generalized formulae of models and
determined the necessary condition to generate the KaiC
phosphorylation cycle. Linear stability analysis revealed that
oscillations can occur when there is sufficient distance of
feedback between the recipient reaction and the effector.
Furthermore, we found that the negative feedback
regulations in closed systems can be classified into two
types: destabilizing inhibition and stabilizing inhibition.  

Based on this result, we predicted that, in addition to the
identified states of KaiC, another unknown state must be
present between KaiC phosphorylation and the complex
formation. By incorporating the unknown state into the
previous model, we realized the periodic pattern reminiscent
of the KaiC phosphorylation cycle in computer simulation.
This result implies that the KaiC-KaiA complex formation
requires more than one step of posttranslational modification
including phosphorylation or conformational change of
KaiC. This prediction has recently been confirmed by
experimental methods.  

●Mochizuki, A. (2008). Structure of regulatory networks and diversity
of gene expression patterns. J. theor. Biol. 250, 307-321.
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〔Original paper〕Figure 4. Schematic representation of closed circuit model and the
condition for the possible oscillation by inhibition of the transition from
state V1 to V2. Red-colored state (V1, V4-V7) indicate that inhibition from
the states can destabilize the system and possibly cause oscillation.
Inhibition from the blue-colored state never induces oscillation.  

Table 1. Summary of the results of the general state transition model
with conservation of molecules. The system could oscillate when the
inhibiting state is more than two steps ahead of the inhibited reaction
(from V1 to V2).  If the inhibiting state is less than three steps ahead of
the reaction, the system is always stable. The necessary distance between
the inhibiting state and reactant state does not depend on the system size. 

Figure 5. Schematic representations of "Basic model" (left) and
"Multiple-phosphorelation-state model" (right). The basic model is
determined from experimental results. It was proven that the model
never shows oscillation. The multiple-phosphorelation-state model was
developed based on a mathematical analysis. The model shows clear
periodic oscillations. There are at least two different phosphorelated
states. The time-delay caused by the transition between the states is
essential for generating oscillation. 




