
トランスポゾンとゲノムの再編成 多様性生物学研究室(栂根)

ゲノム中には多くの転移因子(トランスポゾン)が存在しているが、その多くは転移する事ができない。しかし稀にゲノムによる抑制機構をすり抜けて転移できるトランスポゾンが存在する。どようにゲノムはトランスポゾンの制御しているのか、また転移によって引き起こされるゲノムの再編成は生物にどんな影響を与えているのかを調べている。さらに内在性トランスポゾンを用いてイネの遺伝子破壊系統を作出して、機能ゲノム学的解析も試みている。

自然栽培条件下で DNA トランスポゾン nDart1 が転移するタギング系統から選抜されたイネの snow white leaf 変異体 (左) は、アルビノ変異であるが nDart1 の脱離によって生存して結実することもある。(文献 3)。

ゲノムのダイナミズム

ゲノム中には多くのトランスポゾンが存在している。例えばヒトではおよそ45%、イネでは35%がトランスポゾン様の配列である。トランポゾンによるゲノムの再編成は、進化の原動力一つとなっていると考えられるが、トランスポゾンの転移は、ホストのゲノムにとって有害になるので、転移する能力はジェネティックやエピジェネティクに抑制されており、通常の成育条件下で転移する事はまれである(文献2)。そこで転移できるDNAトランスポゾンに注目して、トランスポゾンによるゲノムのダイナミズムと遺伝子発現の制御機構の解明を明らかにすることを試みている。

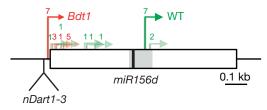


図 1. nDart の挿入による優性変異の原因の解明

高い精度でゲノム配列が決定されているイネは、トランスポゾンの挿入領域やゲノムの再編成を詳細に解析することができる。我々は自然栽培条件下で活発に転移することができる DNA トランスポゾン nDart1 を同定した (文献 7)。nDart1 の転移には、自律性因子 aDart1 が必要であるが、通常はエピジェネテイックに抑制されている。nDart1 が活発に転移する時期を明らかにし (文献 5)、さらに、脱メチル化によって aDart1 を持たないイネ系統でも転移を活性化できることも示した (文献 3)。nDart1 は、GC 含量の差が大きい領域に挿入し易い性質をもっているので、ゲノム中に存在している転移の制御因子の同定に向けて研究を行っている。

トランスポゾンの挿入による優性変異

ゲノムの変異の多くは劣性となるが、nDart1の挿入変異体の中にはしばしば優性となる突然変異体が観察される。不完全優性でわい性となる Bdt1 変異体では機能のあるマイクロRNA の発現様式が nDart の挿入で変化していた(図1、文献2)。DNA トランスポゾンが優性変異の原因となる例は非常に珍しく、その原因は未解明な部分が残されているので、優性となった変異体を選抜して解析を行っている。

参考文献

- Gichuhi, E., Himi, E., Takahashi, H., Zhu, S., Doi, K., Tsugane, K. and Maekawa, M. (2016). Identification of QTLs for yield-related traits in RILs derived from the cross between pLIA-1 carrying *Oryza longistaminata* chromosome segments and Norin 18 in rice. Breed. Sci. 66,720-733.
- Hayashi-Tsugane, M., Maekawa, M., and Tsugane, K. (2015). A gain-of-function Bushy dwarf tiller 1 mutation in rice microRNA gene miR156d caused by insertion of the DNA transposon nDart1. Sci. Rep. 5, 14357; doi: 10.1038/srep14357.
- 3. Hayashi-Tsugane, M., Takahara, H., Ahmed, N., Himi, E., Takagi, K., Iida, S., Tsugane, K., and Maekawa, M. (2014). A mutable albino allele in rice reveals that formation of thylakoid membranes requires SNOW-WHITE LEAF1 gene. Plant Cell Physiol. *55*, 3-15.
- Eun, C.-H., Takagi, K., Park, K.I., Maekawa, M., Iida, S. and Tsugane, K. (2012). Activation and Epigenetic Regulation of DNA Transposon nDart1 in Rice. Plant Cell Physiol. 53, 857-868.
- Saze, H., Tsugane, K., Kanno, T. and Nishimura, T. (2012). DNA methylation in plants: Relationship with small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol. 53, 766-784.
- 6. Hayashi-Tsugane, M., Maekawa, M., Kobayashi, H., Iida, S. and Tsugane, K. (2011). A rice mutant displaying a heterochronically elongated internode carries a 100 kb deletion. J. Genet. Genomics, *38*, 123-128.
- Takagi, K., Maekawa, M., Tsugane, K., and Iida, S. (2010). Transposition and target preferences of an active nonautonomous DNA transposon nDart1 and its relatives belonging to the hAT superfamily in rice. Mol. Genet. Genomics 284, 343-355.

助教 栂根 一夫

