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細胞は、様々な環境からの刺激や内的な状態といった「入力」を感知し、その情報
を「細胞内シグナル伝達系」により処理し、最終的に細胞の増殖や分化といった表
現型を「出力」する、いわば「入出力装置」である。この入力シグナルをデコード
し情報変換して適切に出力するシステムが「細胞内シグナル伝達系」であり、その
実態は物理化学的な反応のネットワークである。分子生物学の進展に伴い、シグナ
ル伝達分子やその経路の同定が進んだが、分子の濃度や反応速度といった定量的な
情報が圧倒的に不足している。私たちは、細胞内シグナル伝達系を構成する反応を
定量的に測定し、最終的にはコンピューターで細胞をシミュレートすることを目指
して研究している。

細胞内シグナル伝達系を定量的に理解する
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実測パラメーターに基づくシミュレーション

薬剤、光によるシグナル伝達系の操作FCCSによる解離定数の測定
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細胞内のもつ入出力システム、すなわち細胞内シグナル伝達系の動作原理を、「可視化」、「定量化」、「操作」
という３つのアプローチで理解することを目指す。
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細胞をシミュレートする
　細胞は生命の基本ユニットである。細胞は、環境や内的な
状態の変化に応答し、適切に表現型に変化させ適応する。そ
れを可能にしているのは、「細胞内シグナル伝達系」と呼ば
れる細胞内の反応ネットワークシステムである。このネット
ワークは、分子と分子の結合や酵素反応といった化学的な素
反応がいくつも連鎖して構成されている。したがって、全て
の反応を速度論的に微分方程式で記述し、コンピューターで
数値計算することで、理論上は細胞内シグナル伝達系の全て
の構成分子の動態を予測できるはずである。これは細胞内シ
グナル伝達系の理解だけでなく、抗癌剤の最適な標的分子の
探索や効果予測など臨床的にも非常に意義がある。しかしな
がら、現状はそうはうまくいっていない。その理由は、分子
の濃度や反応速度といった定量的な情報（パラメーター）が
圧倒的に不足しているからである。
　私たちは、細胞内シグナル伝達系を構成する反応とその
パラメーターを定量的に測定し、実測データを用いてコン
ピューターで細胞をシミュレートすることを目指して研究し
ている。以下に、私たちが取り組んでいることを紹介する。

可視化
　細胞内シグナル伝達系を生きた細胞内で定量的に可視化す
るためのバイオセンサーを開発している。細胞内の分子活性
の変化を１細胞レベルで経時的に捉えることができる、蛍光
共鳴エネルギー移動（FRET）の原理に基づくバイオセンサー
（文献４）（図１）や、細胞内局在を指標にしたバイオセンサー
を開発している。

定量化
　反応パラメーターを効率良く取得するための技術開発も
行っている。蛍光相互相関分光法（FCCS）を用いた解離定
数（Kd）の測定（文献２）、CRISPR/Cas9 遺伝子編集法
による内在性分子の濃度の測定、イメージングによる酵素反
応速度定数の測定などを行っている。得られたパラメーター
を基に、ボトムアップでシミュレーションモデルを作成し、
数値計算により仮説を検証する（文献5）。

操作
　細胞内シグナル伝達系に含まれるフィードバック制御やク
ロストーク制御を理解するには、摂動による動的な変化を捉
える必要がある。薬剤や光による細胞内シグナル伝達系の摂
動法の開発にも取り組んでいる（文献3）。

細胞増殖・分化・細胞死の定量的な理解へ
　上記の技術を利用し、細胞にとって本質的な機能である、
細胞増殖・分化・細胞死の３つの表現型に関連するシグナル
伝達系を定量的に理解することを目指している。アナログ的
でしなやかなシグナル伝達系が、デジタル的で頑強な表現型
を創発する原理に迫りたい。
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図１：リガンドで刺激したときのPKA, Akt, PKC, ERK, JNK, S6K活性を
FRETイメージングで可視化した結果
キナーゼ活性を疑似カラーで示している。寒色が低活性、暖色が高活性を示し
ており、それぞれの色の明るさがFRETバイオセンサーの細胞内の局在を示し
ている。


