
動物が環境の季節変化を感知して

巧みに適応する仕組みを解明する

春夏秋冬の季節の移ろいにともない、日の長さ(日長)や気温、降水量など、生物をとりまく環境は刻々と変化する。動物はこの環境の変化を感知して、繁殖、渡り、休眠、換毛など、様々な生理機能や行動を変化させているが、動物が季節の変化を読み取る仕組みはまだ解明されていない。メダカは、日長や水温の変化を敏感に感知し、春から夏にかけて繁殖する。また、ゲノムが解読されているだけでなく、生息する地域によって季節の変化に対する応答性が異なることが知られている。本部門では、日本の様々な地域で採集された野生メダカや遺伝子改変メダカを駆使して、動物が日長や温度の変化を感知して環境の季節変化に適応する仕組みの全容の解明を目指している。

Members

客員教授 吉村 崇

特任助教 四宮 愛 新村 毅

特別共同利用研究員 千賀 琢未 (名古屋大学) 足立 大輔 (名古屋大学) 下 貴行 (名古屋大学)

特別実習生 中務 真愛 (名古屋大学)

技術支援員 馬場 奈弓

事務支援員 大久保 雅代

メダカ(右上)は日照時間と温度の変化に敏感に反応し、春から夏にかけて繁殖活動を行う(右下)。高緯度地方に生息するメダカは低緯度地方に生息するメダカに比べて洗練された季節応答を示すことが知られている。本部門では日本各地で採集された野生メダカの解析を通じて動物が日照時間や温度の変化を感知して環境の季節変動に適応する仕組みの解明に取り組んでいる。左上は青森県つがる市で野生メダカを採集している様子。左下は愛知県豊橋市の水路を泳ぐ野生メダカ。

季節生物学研究部門

脊椎動物の季節適応機構

動物の行動の季節変化については紀元前300年代のアリストテレスの著書「動物誌」にも記述されているが、2300年以上経った今日も、生き物がいかに季節を感知して、四季の環境の変化に適応しているかは明らかにされていない。我々はこの謎の解明に挑戦している。

動物が季節を感知する仕組みを解明するには、四季の変化 に明瞭に応答する生き物に学ぶのが近道である。鳥類は空を 飛ぶため、可能な限り身体を軽くしており、生殖器も必要な 時期だけ発達させる。特に雄では日照時間(日長)が長くな ると精巣重量がたった2週間で100倍以上も大きくなる。 このように生物が日長の変化に反応する現象は「光周性」と 呼ばれている。鳥類、とりわけウズラは急速かつ劇的な光周 反応を示すため、光周性の解明に最適なモデル生物として研 究に用いられてきた。そこで我々はウズラを材料として、脳 の視床下部において春に発現誘導を受ける遺伝子群を探索 し、光周性を制御する鍵遺伝子 DIO2 を単離した (文献 5)(図 1)。また、ゲノムワイドな遺伝子発現解析により、DIO2遺 伝子を制御する光周性のマスターコントロール因子として下 垂体隆起部の甲状腺刺激ホルモン (TSH) を同定した(文献 3)。哺乳類においては眼が唯一の光受容器官であるが、哺 乳類以外の脊椎動物は脳内にも光受容器を持つことが知られ ている。我々はゲノム情報を駆使して、ウズラの脳内で日長 の変化を感知する新規な光受容分子、オプシン5を発見し た(文献2)。これらの研究により、鳥類の光周性を制御す る情報伝達経路を明らかにすることができた(図1)。

我々はさらに遺伝子改変マウスを用いて、ウズラで明らかにした仕組みが、ヒトを含む哺乳類においても保存されていることも明らかにしている(文献4)。さらに最近、サケ科のヤマメにおいても解析を進めており、魚類特有の器官で、機能が知られていなかった「血管嚢」が、季節を感知するセンサーとして働いていることも明らかにした(文献1)。

動物が日の長さを測る仕組みの解明に向けて

我々のこれまでの研究によって、脊椎動物が季節の変化を 感知する情報伝達経路が明らかになってきた。しかし、ウズ ラがどのようにして 12 時間の明期を長日と認識し、11 時間 30 分の明期を短日と認識するのかという、「臨界日長」 の謎、すなわち、光周性の本質は明らかになっていない。メ ダカは日本各地に生息しているが、東北地方など、高緯度地 方のメダカは沖縄などの低緯度地方のメダカに比べて、洗練 された光周反応を示すことが知られている。また、生き物が 環境温度の変化を感知して季節に適応する「温周性」の謎も、 いかなる生物においても解明されていない。メダカはこの温 周性を解明するモデルとしても優れている。本部門では、メ ダカをモデル動物として、臨界日長と温周性の謎の解明を目 指している。

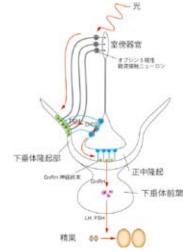


図 1. ウズラの研究で明らかになった鳥類の光周性の制御機構

脳内光受容器のオブシン5で受容された長日の情報は下垂体隆起部に伝えられると光周性を制御するマスターコントロール因子の甲状腺刺激ホルモン (TSH) の分泌を促す。TSH は視床下部に作用すると光周性の鍵遺伝子 DIO2 の発現を促す。DIO2 は視床下部内で局所的に甲状腺ホルモンを活性化し、生殖腺の発達を促す。

参考文献

- Nakane, Y., Ikegami, K., Iigo, M., Ono, H., Takeda, K., Takahashi, D., Uesaka, M., Kimijima, M., Hashimoto, R., Arai, N., Suga, T., Kosuge, K., Abe, T., Maeda, R., Senga, T., Amiya, N., Azuma, T., Amano, M., Abe, H., Yamamoto, N., and Yoshimura, T. (2013). The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nature Communications 4, 2108.
- Nakane, Y., Ikegami, K., Ono, H., Yamamoto, N., Yoshida, S., Hirunagi, K., Ebihara, S., Kubo, Y., and Yoshimura, T. (2010). A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc. Natl. Acad. Sci. USA 107, 15264-15268.
- Nakao, N., Ono, H., Yamamura, T., Anraku, T., Takagi, T., Higashi, K., Yasuo, S., Katou, Y., Kageyama, S., Uno, Y., Kasukawa, T., Iigo, M., Sharp, P.J., Iwasawa, A., Suzuki, Y., Sugano, S., Niimi, T., Mizutani, M., Namikawa, T., Ebihara, S., Ueda, H.R., and Yoshimura, T. (2008). Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452, 317-322.
- Ono, H., Hoshino, Y., Yasuo, S., Watanabe, M., Nakane, Y., Murai, A., Ebihara, S., Korf, H.W., and Yoshimura, T. (2008). Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc. Natl. Acad. Sci. USA 105, 18238-18242.
- Yoshimura, T., Yasuo, S., Watanabe, M., Iigo, M., Yamamura, T., Hirunagi, K., and Ebihara, S. (2003). Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426, 178-181.

客員教授 吉村 崇

特任助教 四宮 愛

特任助教 新村 毅

