総説

維管束植物の茎頂とホメオボックス遺伝子

長谷部光泰 1, 佐野亮介 2
1 基礎生物学研究所（〒444 岡崎市明大寺町）
2 千葉大学理学部（〒263 千葉市稲毛区弥生町）

Mitsuyasu Hasebe1 and Ryosuke Sano2
1 National Institute for Basic Biology, Myodaiji-cho, Okazaki, 444 Japan
2 Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 260 Japan

要旨
KNOX 遺伝子群は、ホメオボックスを持ち、植物の器官分化に関わると考えられている。mRNA、タンパク質の発現様式、突然変異体の解析から、シュート分化、葉緑形成に関係しているらしいことがわかってきている。しかし、機能にあいまいな点もあり、これは、遺伝子重複によって生じたいくつかの遺伝子が redundancy を持ち、進化しつつある状態を反映している可能性が高い。KNOX 遺伝子の最近の研究を総説する。

Abstract
Genes of the KNOX gene family have the homeo domain and have been revealed to be related to the organogenesis in plants. Based on the results of mRNA and protein in situ hybridization and mutant analyses, the genes closely related to the maize knotted-1 gene were reported to be involved in the shoot differentiation and the compound leaf formation. Redundancy of the genes in the family are observed and it may show the evolutionary dynamics of the gene family. Recent studies on the KNOX genes are reviewed.

key words: KNOX, homeobox, shoot apical meristem, leaf primordium, knotted

はじめに

植物のシュートは茎頂分裂組織（shoot apical meristem）から形成される。シダ植物の茎頂分裂組織は、ヒカゲノカズラ類を除き、はっきりと識別できる一つの頂端細胞を持っている。しかし、種子植物では、はっきりとした単一の頂端細胞は認識できず、多数の細胞群によって茎頂分裂組織が構成されている。また、コケ植物は一般にはっきり識別できる一つの頂端細胞を配偶体の分裂組織に持っていることから、シダ植物のような茎頂がより原始的であると推定される。種子植物の系統では、どのような遺伝子の変化が起こることによって、このような形態的変化（進化）が引き起こされたのだろうか。また、種子植物での複雑な茎頂の進化は、種子植物進化においてどのような意味があったのだろうか。

一方、はっきり識別できる一つの頂端細胞を持つ茎頂を形成する時期と、多数の細胞によって構成される茎頂分裂組織を形成する時期を合わせ持つ植物も知られている。シダ類のミズワラビでは、胞子から発芽した直後の原糸体は、はっきりとした一つの頂端細胞を持ち、その形態は、胞子体の茎頂分裂組織の頂端細胞と良く似ている。しかし、原糸体が2次元成長を開始し、ハート型の前葉体が形成されるころには、外見上
区別できないいくつかの細胞からなる茎頂分裂組織を持つようになる。このような形態形成の時間的な制御はどのような機構によって行われ、どのような意味があるのだろうか。

これらの問題にアプローチするためには、モデル植物の茎頂分裂組織を形成している遺伝子群を解析することが先決となる。茎頂分裂組織特異的に発現している遺伝子がこれまでいくつか単離され解析されている（Medford, 1992）。その中で、最も解析が進んでいるのがKNOX遺伝子群である。本総説では、KNOX遺伝子と形態との関係について整理する。

KNOX遺伝子群とそのホモログ

トウモロコシのKnotted-1（Kn1）遺伝子のgain of functionの優性突然変異体は、葉に形態異常をきたし、葉の側脈上に異所的に葉舌が形成され、瘤ができる。この遺伝子がトランススポゾンタキングによって単離され、動物で形態形成に重要な働きを持っているホメオドメインを持つ遺伝子であることがわかった（Vollbrecht et al., 1991）。Kn1遺伝子のホメオドメインはDNA結合能、核移行シグナル能を持ち（Meisel and Lam, 1996）、形態形成における制御遺伝子として機能しているのではないかと推定されている。その後いくつかの植物群から、類似の遺伝子が単離され、総称してKNOX遺伝子群と呼ばれている。形態形成における制御遺伝子は、植物では、他にMADS遺伝子群やLEAFY遺伝子群などが知られており、形態進化において重要な役割を果たしたのではないかと考えられている。Kn1遺伝子が単離された当初は、葉に形態変異を引き起こす変異体であることから、葉で発現し、その形態形成に関係する遺伝子であろうと推測されていた。しかし、mRNA、タンパク質の発現様式の解析（Smith et al., 1992; Jackson et al., 1994）は、予想を覆すものだった。

Kn1遺伝子のmRNAは、栄養および花序茎頂分裂組織周辺で検出され、葉原基ができる部分では、発現が抑制されていた。そして、葉では、少なくとも形態形成初期においては、全く発現が見られなかった。また、タンパク質も、ほぼ同じ組織の核で検出されており、茎頂分裂組織周辺で転写調節の働きをしていると考えられている。mRNAとタンパク質の発現様式が異なる部分もあった。mRNAは茎頂分裂組織の内体のみで発現し、外衣では発現していなかったが、タンパク質は、外衣、内体の両方で検出された。このことは、Kn1タンパク質が細胞間におけるシグナルとして働いていることを示唆しているかもしれない（Jackson et al., 1994）。Kn1変異体において、Kn1遺伝子は葉身の維管束のみで異所的に発現しているが、葉肉、表皮細胞に変異を起こして瘤を形成することとも関係しているかもしれない。実際に、Kn1タンパク質は、原形質連絡を通して自分自身、一定の大きさ以下の他のタンパク質、そして特定のmRNAを移動させる能力があることが示されている（Lucas et al., 1995）。KN1のこの能力は、植物の器官分化細胞系録よりは位置情報によって支配されており、そのためには、細胞間の情報伝達が必須であることと深く関わっている可能性がある。

茎頂分裂組織で強い発現が見られたが、その機能はいったいなんのものであろうか。過剰発現実験がそのことに対する示唆を与えている（Sinha et al., 1993）。Kn1遺伝子をタカノリで過剰発現させると、葉が緑み、3裂する。また、strong突然変異体では、主脈周軸側からシュートが分化し、その後花序となり、花を咲かせる。葉は、有限成長器官であり、そこは異所的に有限成長器官であるシュートが分化することから、Kn1遺伝子は、有限成長と無限成長を制御しているのではないかと考察された。また、動物のホメオボックス遺伝子機能からの類推として、Kn1遺伝子は、細胞がどの器官になるかの決定にかかわっているのではないかと考えられている。動物と植物の共通祖先種は単細胞生物であり、両系統は独立に多細胞化をとげた生物群であるから、安易に多細胞動物での研究に植物ホメオボックス遺伝子機能をなぞらえるのは

— 10 —
注意が必要である。いずれにしろ、K1-1遺伝子の発現が茎頂分裂組織で強く見られ、葉原基が形成されるときには抑制されることも考えられる。K1-1遺伝子が、シュートの分化に関わっていることは確かである。シロイヌナズナでのK1-1遺伝子のホモログであるKNAT1遺伝子の発現模式、過剰発現実験結果もほぼ同様であった（Lincoln et al., 1994）。

一方、過剰発現形質転換体に見られた、葉が縮み、しばしば葉片を形成するという性質は、K1-1遺伝子の別の機能を現しているのかもしれない。タハコは元来単葉を持つが、複葉を持つトマトでK1-1遺伝子を過剰発現させると、複葉化が著しく促進され、1枚の葉に数百以上の小葉が形成されるようになることがわかった（Hareven et al., 1996）。このことから、K1-1遺伝子は、複葉形成にも関与している可能性がある。では、タハコの葉はどうして葉片ができるだけで、トマトのように著しい複葉化をしなかったのであろうか。

トマトにも、タハコのように単葉を付ける優性のLanceolate突然変異体がある。この変異体で、K1-1遺伝子を過剰発現させると、タハコと観察されたように変異葉が形成されるが、Lanceolate変異体がどのように引き起こされているかは不明である。また、トマトには、複葉形成に関する突然変異体がいくつか報告されているが、Petroselium、potato-leaf突然変異体では、これらの表現型と同様にK1-1遺伝子を過剰発現させた影響が出ることがから、複葉形成にはK1-1遺伝子系だけではなく、いくつかの遺伝子系が関与していることが示唆される。このことは、被子植物の葉の多様性を分子レベルで解明するうえで、興味深いものである。さらに、異常に複葉化したK1-1遺伝子過剰発現トマトでは、複葉形成時にシダ植物やソテツ類でみられるような、ワラビ巻きが似たことも特徴に値する。

以上の結果から、K1-1遺伝子と他の植物でのホモログは、シュート分化と複葉形成に関与していることが示唆された。しかし、遺伝子機能をはっきりと解析するには、loss of function突然変異体あるいは遺伝子破壊した形質転換体の観察が必須である。シロイヌナズナで子葉は形成されるが、茎頂が形成されないために、本葉をつかったシュートが形成されないShoot meristem less（stm）突然変異体の遺伝子が単離され、K1-1遺伝子に似た配列を持っていることから（Long et al., 1996）、K1-1遺伝子群のloss of function突然変異体であることがわかった。STM遺伝子は、突然変異体から予想される通り、野生型においては、古い胚の茎頂分裂組織、栄養茎頂分裂組織、花序茎頂分裂組織の頂端周辺で発現していた。そして、栄養茎頂分裂組織の葉原基、花序茎頂分裂組織の花原基が形成される部分では、発現が抑制されていることがわかった。これらの結果から、初期にK1-1遺伝子群の研究で予想されていたように、KNOX遺伝子群は、明らかにシュート分化に関与していることがわかった。

しかし、いくつかか認められない現象もある。トウモロコシでは、栄養茎頂とともに、花序茎頂でもK1-1遺伝子が発現しているが、シロイヌナズナのK1-1ホモログであるKNAT1は栄養茎頂のみで発現し、花序茎頂では発現しないこと（Lincoln et al., 1994）、先述したトマトのホモログ（Tk1）は、茎頂だけでなく、葉原基で発現していること（Hareven et al., 1996）、など疑問点が多い。さらに、トウモロコシK1-1遺伝子自体についても、どうしてK1-1変異体の葉に異所的葉原基ができるのか、不明である。同じイネ科のイネにおけるK1-1ホモログであるOSH1をタハコで過剰発現させると、K1-1の過剰発現時と同じように葉脈からシュートが分化するが、シラカモレの中で過剰発現させたとき、葉に異所的葉原基が形成される（Matsuoka et al., 1995）。異所的の葉原基形成については、（1）タハコと異なり、トウモロコシやイネでは、K1-1遺伝子は葉原基形成能を持っている、（2）葉脈は、葉形態形成における基底状態ground stateであった、K1-1遺伝子とそのホモログは、形態形成の進行を阻害し、無分化な状態を維持する機能を持つため、葉への分化が遅り、葉脈が分化した、（3）K1-1遺伝子は形態の異時性に関わる遺伝子で、葉身形成期にある部分に異所的
に作用して、葉舌形成期にスイッチさせたといった仮説が立てられているが（Hake, 1992; Freeling et al., 1992; Sinha et al., 1993; Smith and Hake, 1994; Schneeberger et al., 1995）、その仮説も実証されていない。イネ科の葉舌は、双子葉植物の托葉と同様であると考えられており、OSH1 プロモーターとレポーター遺伝子を融合してシロイヌナズナに形質転換すると、托葉でのみ発現が見られる（Matsuoaka et al., 1993）。このことは、（1）の仮説を支持しているかもしれない。しかし、大きな問題点は、トウモロコシの葉舌形成時に Kn-1 遺伝子が発現していないことである。このような、機能のあいまいさにたいして、遺伝子系統樹が興味深い示唆を与えてくれる。

核遺伝子は、通常遺伝子族を形成しており、族内遺伝子の関係が、homologous なのかを調べるには遺伝子系統樹を作ることが必要となる。図 1 にこれまで報告された植物の Kn-1 関連遺伝子の遺伝子系統樹を示す。この図からわかるように、シロイヌナズナは、シダ類、被子植物の分岐と双子葉類、単子葉類の分岐の間に遺伝子重複した KNAT1 と STM、シダ類、被子植物の分岐したよりも前に KNAT1 と STM の祖先遺伝子と遗传子重複した ATK1、そして、より古くに分岐し、機能が良くわかっていない KNOT3, KNAT4, KNAT5 の6つの遺伝子を持つことがわかる。そして、Kn-1 遺伝子のシロイヌナズナでのホモログは KNAT1 であり、トウモロコシの STM ホモログは、まだ見つかっていないことになる（図 1）。これまで、loss of function 突然変異が知られているのは STM 遺伝子だけである。極端に考えると、STM 遺伝子とそのホモログ（シロイヌナズナとダイズ以外では見つかっていないが）だけがシュート分化に関係していて、他の遺伝子は、シュート分化の役割を STM 遺伝子にまかせ、他の機能を担いつつ進化しているという可能性もある。つまり、Kn-1 遺伝子の機能にあいまいな点が多いことの一つの原因は、遺伝子重複によって生じた何かの遺伝子が redundant な関係にあり、遺伝子の機能的制約が緩み、遺伝子がさまざまな進化的実験をしていることにかかわるかもしれない。

ここで、redundancy（総説として、Pickett and Meeks-Wagner, 1995）について少し触れておこう。元来、何らかの機能を備えていた遺伝子が遺伝子重複により2つになると、どちらかの遺伝子が元来の機能を保持すれば、致命的なダメージを生体に与えることなく他方の遺伝子は、変化することができる。つまり、機能の制御から解き放たれ、進化することが可能となる。遺伝子重複直後は、両方の遺伝子は同じ機能を持っているだろうが、突然変異の蓄積により機能分化してくることが期待される。そして、ついには、全く異なった機能を持つに到るかもしれない。その両極端の中間において2つの遺伝子は redundant な関係を持つことになる。一方、遺伝子重複とは関係なく、本来全く起源の異なった遺伝子が同じ現象に関わることにより、redundant な関係になることもあるであろう。これは、進化における収斂現象であり、遺伝子重複後の遺伝子の進化過程とともに、形態進化を遺伝子レベルで解明するうえで重要な現象であるとともに、形態の多様性を導き出している要因の一つである可能性が高い。

終わりに

以上、シュートの形成に関与している可能性が高い KNOX 遺伝子群の最近の研究結果をまとめた。しかし、KNOX 遺伝子群がどのようにシュート形成に関与しているかについては、全く研究が進んでいない状況である。従って、今後、（1）ゲノム内に存在する KNOX 関連遺伝子を全てクローニングし、mRNA、タンパク質の発現様式を解明する、（2）遺伝子破壊により、各遺伝子機能を推定する、（3）KNOX 遺伝子群の上流、下流遺伝子群の解析と制御機構の解明が必要となるであろう。また、KNOX 遺伝子群以外にも茎頂分裂組織の形態形成に関与していることが知られている遺伝子が単離されており（Souter et al., 1996; Clark et al., 1993; Bancroft et al., 1993）、それらの機能解析、KNOX 遺伝子との関係にも興味が持たれる。
そして、はじめに述べたような形態進化にアプローチするためには、現在用いられているシロイヌナズナ、イネ以外にも、より多様なモデル植物を開拓する必要がある。シダ植物でモデル植物としてももっと有望なのはリチャードミズワラビ（Ceratopteris richardii）である（Chasen, 1992）。シダ植物は一般に多年草であるが、リチャードミズワラビは1世代が約3カ月であり、温度条件さえとあれば（约30度）年中栽培可能である。また、前楽体を用いた交雑実験は容易である（Eberle et al., 1995；その他の情報はhttp://www.bio.utk.edu/botany/efern/manualtw.html参照）。コケ植物では、ニセツリガネゴケ（Physcomitrella patens）がモデル系としてほぼ確立されている。交配実験、形質転換が可能である（詳しくはhttp://www.unil.ch/lpc/docs/mosswelcome.html参照）とともに、近年、植物としては例外的に容易に遺伝子破壊が可能であることが報告され（Kammerer and Cove, 1996）、新しいモデルとして期待されている。

引用文献

図1 KNOX遺伝子群の遺伝子系統樹。ホメオドメイン周辺の90アミノ酸配列を用い、PROTDIST、NEIGHBORプログラムを用いて構築した。枝の数字は、100回当たりのブートストラップ確率を示す。本系樹は無根であるが、植物ホメオボックス全体を含んだ系統樹を参考に根を付けてある。