2章
植物ゲノム研究の
新展開

3
形態形成遺伝子と進化
Evolution of Genes Related to Morphogenesis

長谷部光泰
Hasebe Mitsuyasu
東京大学 理学部附属植物園

KEY WORDS
形態形成，進化，MADS遺伝子族

植物形態形成遺伝子の例として，花器官形成などに関与する転写調節因子，MADS遺伝子族について解説した。植物のMADS遺伝子族は、双子葉植物と単子葉植物の分岐よりも早く，遺伝子重複によって形成されたと推定される12のグループから形成されており，それぞれ機能分化している。また，各グループ内でも遺伝子重複が起こっており，被子植物の花器官形成の多様化，裸子植物から被子植物への生殖器官の進化に関与していることが示唆される。

はじめに
この地球上には，約30万種以上の植物が分布していると言われている。以上と書いたのは，まだ発見されていない植物がかなりありそうだからである。その一例を挙げてみよう。被子植物の花は，外側から，果皮，花弁，雄蕊，雌蕊の順に配列している。これは，1899年まで，すべての被子植物に共通の特徴だった。しかし，この年に新解のラカンドニアという植物1は雄蕊と雌蕊の順番が他の被子植物とは逆だったのである。
地球上で，植物学者によってきちんと調査されておらず，現代的な植物誌が完成していない地域は，熱帯を中心にまだあちこちで，100年前に比べればどれだけ多様な植物があるかという知識はかなり増大し，多様性の研究は進化過程を研究する方向へと進展してきている。

多様な植物がどのように進化したのかを知る第一歩は，系統（類縁）関係を知ることである。植物界の系統図ができれば，多様な形態がどのように進化してきたかを推定することができる。この10年程の間に，塩基配列データを用いた分子系統学1の発展により，被子植物2とシダ類3についてはおおまかな系統関係がわかってきた。しかし，植物についていえば，まだはっきりとした系統関係はわかりていない。また，よく研究されている被子植物のなかでも，多くのあいまいな点が残されている。身近な例では，シロイヌナズナ，ダイズ，キンギョソウのうち，どの2種がより近縁なのかはわかっていない。

系統関係が推定できれば，形態的多様性がいつどの系統で生じたかという推定が可能になる。次に段階として，一体どのような変化（進化）が遺伝子に起こることによって，形態的多様性が形成されたのかが，多様性研究の重要な課題となっている。本稿では，形態的多様性を導いた形態形成遺伝子の進化について，植物の生殖器官形成に深い関係があるMADS遺伝子群を中心に最近の研究をまとめている。

1. 比較

1. 形質の比較
形態形成遺伝子の進化様式を研究するためには，現生種間の遺伝子を比較することとなる。ここでは，比較の方法について検討して
みよう。しばしば、普段的な現象と、ある生瓶に特異的な現象という言い方がされるが、これは系統進化ではどのような意味合
いをもっているのであろうか。このことについて、少し詳しく考えてみよう。

系統樹は、現生種の類縁関係に時間軸を加えたものである。現生種の比較においても系統樹を考慮することが必要である。図1に示
したように、系統樹の分岐点には、過去に存在していた祖先種が位置付けられる。種の分
化は祖先種の遺伝子の一部が改変されて起こるので、現生種は、祖先種がもっていた形質
(遺伝子と置き換えるべき) とともに、新しい形質をもつこととなる。図1の祖先種は
a, b, c, d, e, fという形質をもっており、現生種Aでは、a, e, fがそれぞれg, j, kに
変化し、Bではb, d, fがそれぞれh, j, kに変化することによって進化が起こったとする。
現生種A, Bを比較して、共通に見られる形質は、祖先種から両現生種が引き継いだ形質と、A, Bの進化過程で異なった形質(A
のjはeから、Bのjはdから)が変化してきていた。さらに、A, Bの進化過程で同じ祖先形質
から変化してできたkである。jができるような進化過程を収斂進化*2 (convergent evo-
lution) と呼び、kができるような進化過程を平行進化*2 (parallel evolution) と呼ぶ。一方、A, Bで異なっている形質a, b, d, eは
祖先種と共通だが、一方の種の変化過程で失われてしまったもの (Aのb, dとBのa, e) と、祖先種から現生種へ分化する途中で
獲得されたもの(AのgやBのh)を含んでいる。したがって、異なった生物間での形質の
比較、とりわけ進化を考える際には、系統関係を十分に考慮する必要がある。

2. 普遍性

以上からわかるように、いくつかの生物を
調えて共通に見られる形質を普遍的と呼ぶならば、普遍的形質とは、共通祖先がもっており、子孫種でも保存されている形質を指すこ
とになる。このとき、各子孫種での形質が平行進化や収斂進化によって生じたのではない
かという点に注意することが必要である。また、種特異的な形質については、上記のよう
に、いろいろな経緯で生じたものを含んでいることを認識することが大切である。

例えば、動物と植物の多細胞レベルでの形
態形成、共通に観察される遺伝子制御系が
あったとする。動物と植物の分化は単細胞段
階で起こり、多細胞化は動物、植物独自に起
こったと推定されている。ということは、動
物と植物で共通に見られる制御系とは、単細
胞段階のときから用いていたものか、動物
植物の分化後、収斂や平行現象によって
それぞれ独自に進化したもの、ということに
なる。

いくつかの分類群に共通に見られる遺伝子
制御系の例として、動物のHOX/HOM
遺伝子*3が知られている。HOX/HOM遺伝子
群は、すべての動物の体の相対的な位置決
定、すなわちパターン形成に関与している。数個の遺伝子が体軸に沿って発現しており、
この様式は、これまで調べられたすべての動
物に共通している。Slackら*4 はこの遺伝子
発現様式をzootypeと呼び、動物界全体を特
徴づける形質であると提案している。また、
広く動物界全体に見られ、平行進化や収斂進
化によって起こった可能性はほとんどないと
考えられることから、動物の起源であるproto-
animalで確立された発現様式であろうと考え
られる。植物では、まだこのような普遍的な
形態形成に関する遺伝子システムは見つかっ
ていない。

動物においては、6億年以上前に分化した
と推定されているショウジョウバエ、マウスといった、系統的に離れたモドリ動物での解析ができてきるために、発生進化の普遍性を探求することができた。前述のように、動物と植物は別々に多細胞化したので、植物と動物とは異なった形態形成システムをもっている可能性が高く、生物界全体における形態形成の理解という点から非常に興味がもたれる。しかし、植物のモデルの代表であるイネ（単子葉植物）とシロイヌナズナ（双子葉植物）が分岐したのは、たかが2億年前であり、12億年が植物進化の歴史を語るには不十分である。植物における形態形成の普遍性と多様性を解明するには、より古くに分化し、形態的にも大きく異なっているシダ、コケ、藻類などでの研究が、今後必要となると思われる。現在、これらのなかからもモデル植物がよりうる性質をもったものが選択され、シダ植物ではミズワラシ6、コケ植物（シノ類）ではニセコリガネゴケ7における基礎的な研究が進行しつつある。

2. 形態の進化

ショウジョウバエのホメオポリック遺伝子群の発見に端を発し、動物のホメオティック突然変異**を引き起こす突然変異は、転写調節因子やプロテインキナーゼなどの遺伝子発現調節に関わる遺伝子を中心に起こっていることがわかってきた6。植物でも、シロイヌナズナとキャピニウサを中心にして、花のホメオティック遺伝子が単離され、その多くはMADSドメインをもつ転写調節因子であることがわかってきた7。このことから、ホメオティック突然変異体に見られるような形態形質の大きな変化は、転写調節因子など調節系の遺伝子に起きた変異によって生じ、小さな変化はより下流の遺伝子群に起きた変異によって引き起こされているのではないかと考えられるようになってきた。

しかし、これまで得られている形態突然変異体は、自然界において実際に種差を生み出している形態変異を説明することができるのであろうか。異なった植物種間での形態の差は古くから遺伝学者の興味を引き、いろいろな表現型形質が、いくつくらいの遺伝子によって支配されているのが、交雑実験による分離比などから推定されてきた。従来は、小さな影響をもつ多数の遺伝子によって形態は構築されており、それらが徐々に変化することによって形態進化が起こるのではないかという考え方が主であった。近年、QTLマッピング（quantitative trait locus mapping）**5を用いることにより、より正確な解析が可能となってきている。その結果、多くの遺伝子座における変異が大きな形態変化を引き起こしているらしいという例が、いくつか示されてきている10。

例えば、トウモロコシは、メキシコで野生するプタモロコシ（teosinte）から栽培化されてきたと推定されている。トウモロコシとプタモロコシは枝ぶり、花序、種子形態などが大きく異なっており、プタモロコシ発見当初はトウモロコシとは別属とされていたほどである。しかし、トウモロコシとプタモロコシでこのような大きな形態的な違いは、ただ5つのQTLに由来していることがわかった11。QTLで研究されてきたような遺伝子は、遺伝子発現などに関与している調節遺伝子なので、トウモロコシとプタモロコシの形態進化に関する遺伝子については、まだ、遺伝子の単離がされていないが、近年、トウモロコシの仁のアントシアニンの濃度を変化させているとおほかしQTLの一部が、転写調節因子であることが判明したという報告もあり10。実際に進化過程においても調節遺伝子の変化が大きな役割を果たしていた可能性が高い。

また、大きな形態進化が調節系遺伝子の変異によって引き起こされるとしても、その変異がどのように集団内に広がり、新しい種を形成していくかという大きな問題が残っている。通常、生物は環境に適応しており、突然変異体、とりわけ形態的に大きな変異をおこす個体は、他の個体に比べて生存に不利である。突然変異を起こした遺伝子は、自然淘汰によりすぐに集団から排除されてしまうはずである。したがって、大きな形態変化を起こすような調節遺伝子には、多型がほとんど存在しないのではないかと思われていた。と
図2 種系統樹と遺伝子系統樹
(1) は種系統樹、遺伝子A1、A2は種A、遺伝子B1、B2は種Bのもっている遺伝子、(2) のような遺伝子系統樹が得られたときには、A1、A2間、B1、B2間の遺伝子の分岐がAとBの分岐よりも後に起きたことを示す、(3) のような遺伝子系統樹は、A1、A2間、B1、B2間の遺伝子の分岐が、種AとBの分岐よりも前に起きたことを示す。

3. 形態形成遺伝子の進化のモード

では、実際にどのような変化が遺伝子に起きているのであろうか。現生種の形態形成に関与する遺伝子の解析から、転写調節因子を中心とする形態形成遺伝子の進化は、従来もっていた遺伝子の発現場所、時間、他の遺伝子との相互作用を変えることにより起こったと推定される。この進化過程で、ゲノムや遺伝子の重複、タンパク質シスエレメントの変化、重要な役割をもっていたことを明らかである。従来1つだった遺伝子が遺伝子重複により2つになった場合、一方の遺伝子で従来の恒常性を維持しつつ、新しく重複した遺伝子は進化の素材として利用されうる。この際、シスやトランスエレメントが変化して発現様式が変われば、進化が引き起こされる。もちろん、遺伝子重複を伴わなくとも、シス、トランスエレメントの変化だけで、遺伝子発現様式を重複、変化させることも可能である。また、遺伝子制御系の上位に位置する遺伝子の制御系を変えることにより、単独の遺伝子だけでなく、遺伝子全体の発現様式を変えることも可能となる。

実際、遺伝子重複は生物の進化過程で頻繁に起こっており、核遺伝子のほとんどは、1つの遺伝子から遺伝子重複によって生じたと推定される遺伝子族を形成している。遺伝子重複が、いつ起きたのかは、種系統樹と遺伝子系統樹を比較することによってできる（図2）。

以下、植物の花器形成に深い関わりがあり、最もよく研究されているMADS遺伝子族について、形態形成遺伝子の進化の実例を見ていく。

4. MADS遺伝子族

植物のMADS遺伝子族は、動物や菌類のMADS遺伝子と異なり、MADS boxと呼ばれるC末端側にαヘリックス構造をとると推定されているK boxと名付けられたドメインをもっている14)。K boxは、ヘリックスの異なった面に硫水性の部分と親水性の部分をもつ両親媒性であり、2量体化や他のタンパク質との結合に必要であろうと推定されている15)。

植物MADS遺伝子族は大きな遺伝子族で、
プ領域を取り除いた後，遺伝子間での遺伝的距離を算出し，系統樹を構築する．図4に，図3の系統樹に含まれる科の系統関係を示した．先述のように，両系統樹を比較することにより，各遺伝子が互いにイの頂分岐したかを推定できる．単子葉植物と双子葉植物は被子植物進化の初期に分岐したと推定されているので，ここでは，両者の分岐以降，すなわち被子植物成立以前から分かれていた群という基準でグループを分類している．この系統樹はこれまで報告されたものとほぼ一致しているが，単子葉植物，裸子植物のデータが加わったことにより，遺伝子のグループ分けがよりはっきりしている．この系統樹の大きな特徴は，花器官形成のABCモデルのA，B，C遺伝子群がそれぞれ単系統群を構成している点にある．図3では，A，B，C機能をもつ群はそれぞれAP1，AP3とPI，AGグループに対応している．遺伝子グループ間での機能分化は，遺伝子群よりよく見られる特徴である．しかし，これらの他にも花器官で発現しているグループが4つあり，しかもその起源は被子植物の分化以前だと考えられる．したがって，古典的作業仮説であったABCモデルは，今後のMADS遺伝子群の解析により改変されるということであろう，そこで，各グループの特徴と進化的側面について以下にまとめてみた．また，代表的な遺伝子の発現様式を表1にまとめた．

1. AP1グループ
このグループは，AP1，AGL8，ZAPIサブグループと名付けた単系統の3つのサブグループからなる．

1) AP1サブグループ
AP1は，花序原基から花原基を誘導するのに必要な遺伝子である20)．また，同様の機能をもつCAL31)とは機能的にredundancy*13，22)があるが，このことは，図3のように両遺伝子がシロイヌナズナ（アブラナ科）がキンギョソウ（ゴマノハグサ科）から分岐した後遺伝子重複したことからも納得できる．ap1 callの二重変異体は，花器官から花序へ完全な転換が起こり，カリフラワー状の花を形成する．キンギョソウのSQUA23)をも

dいてもよく研究がされており，APIとはほぼ同じ機能を維持しているようである．キンギョソウのSQUA4null 突然変異体では，完全な花序への転換は起こらず，二次的にできた花序に花をつける．このことは，SQUAが花器官形成に必須であることを示している．したがって，キンギョソウにもCALに相当するようなSQUAに近縁な遺伝子が存在している可能性が考えられる．

2) AGL8サブグループ
この群は，単子葉植物が双子葉植物から分岐した後にAPIサブグループと分かれた遺伝子群である．AGL825)はAPIと異なった発現様式をもち，主に花序と心皮で発現しており，APIによって発現が制御されていると推定されている．AGL8がAPIを制御しているかどうかは不明である．一方，ナデシコ科のSilene latifoliaでは，APIサブグループに属するSLM4とAGL8サブグループに属するSLM524)は，ほとんど同じ発現様式をもち，しかもそれはAPIとAGL8の発現様式を合わせたものになっている．このことは，もっととSLM4やSLM5のように，APIとAGL8の機能を合わせて持っていた祖先遺伝子群が，遺伝子重複により機能分化した可能性を示唆している．S. latifoliaの遺伝子重複に応じて遺伝子（SLM4とSLM5）は，シロイヌナズナのような機能分化は起こらず，共に祖先遺伝子と同じ機能を担っているのである．
このことから、分類群によって遺伝子重複後の遺伝子の機能分化様式が異なることがわかる。遺伝子重複後、種分化してしまえば、重複した遺伝子はそれぞれの分類群ごとに独自の進化をたどることを考えれば、このような多様性が存在することは十分納得できる。この遺伝子レベルの多様化が、表現型レベルにどう反映しているのかは、今後の研究課題である。

3) ZAPIサブグループ

ZAPI28) はトウキロコシのAPIグループに属する遺伝子である。ノーザン解析の結果、この群の他のメンバーと矛盾する発現様式は示していない。

2. AGL13グループ

AGL13とAGL6は胚珠特異的に発現している27)。AGL6は、APIやAGに制御されている可能性が高い29)。ZAG3とZAG5については、胚珠を含んだ雌芯のみで発現が見られる28)。DAL28) は裸子植物のPicea abiesから得られ、ノーザン解析により栄養シュート、雌雄球花で発現していることが知られているが、詳細な発現場所は不明である。

3. AGL2グループ

このグループは明らかに単系統群であるが、グループ内部の系統関係については高い統計的支持が得られない。このことは、グループ内にある遺伝子がそれぞれ独立に多様化しており、独自のアミノ酸配列を保持しているためであるかもしれない。実際、各遺伝子の発現様式は多様化している。

AGL229) は花色基から発現が開始し、胚珠を含めたすべての花器管で発現している。また、種皮や胚でも発現が見られる。姫妹遺伝子14) であるAGL430) も、ほとんどの発現様式をもつ。酵母のMADS族遺伝子であるMCM1は、3つの異なる細胞型ですべて発現しているが、各細胞型特異的因子と結合して

※14 姫妹遺伝子
系統的に最近縁な遺伝子で、他のほとんどの遺伝子とも共有しない祖先遺伝子を共有。
細胞型特異的遺伝子発現を調節している。このことから、AGL2はMCM1のように花器官、種子、胚形成の基礎的な機能を持っており、他の器官特異的遺伝子と相互作用しているのかもしれないと考えられている29). 一方で、AGL2は、花序から花へ転換を担っていると推定されているLEAFYやAP1より花原基での発現開始が少し遅く、他の花器官形成遺伝子より早いことから、両者の中間に位置するのではないかとも推定されている30).

この点について、同じ遺伝子グループに属するトマトのTM5におけるアンチセンスRNAの過剰発現31)や、ベチュニアのFBP2におけるコサプレッション*15)により、遺伝子機能を抑制する実験32)は興味深い。TM5の機能を抑制すると、花弁、雄蕊、総花、胚珠のすべてに変異が起こり、時にはAP1突然変異体を思い起こさせるような二重の花をつけることがある。このことは、AGL2グループの遺伝子がAP1との他の花器官形成遺伝子との間に位置しているといえる仮説を支持している。FBP2の組換え体にも同様な表現型を示す。さらに、FBP2の発現を抑制すると、ベチュニアのSQUAホモログ(APIグループ)、FBP1(APIグループ)の遺伝子発現は変化しないが、FBP6 (AGグループ)の遺伝子発現が抑制されることが示された。少なくとも、ベチュニアではAGL2グループの遺伝子がAGグループの遺伝子制御に関わっていることがわかった。

AGL3は、花だけでなく、根を除いた植物体全体で発現しており33)、AGL2、AGL4との機能分化に興味がもたれる。また、シロイヌナズナのAGL9は、FBP2やTM5と同一発現様式をもつことが報告されている。

4. AP3グループ、PIグループ

AGL2グループとPIグループは、共にABCモデルのB遺伝子群として働き、花弁と雄蕊の形成に関与していると考えられている。シロイヌナズナとキシゴヨソウでは、これまで両群から、それぞれ1つずつの遺伝子(AGL34)、DEP35)とPI36)、GLO37)が単離され研究されている。両遺伝子グループは姉妹群であるとともに、生体内で両方の遺伝子グループ由来のタンパク質が2量体を形成し、花弁・雄蕊形成や自己転写活性維持に関与している36)、37)。両遺伝子グループが分岐したのは、単子葉植物が双子葉植物から分岐するより前である。両遺伝子グループの機能に多様性が生じていることが、ベチュニアで報告されている。被子植物で知られる通常の花器官突然変異体では、ABCモデルから推察されるように、1遺伝子の突然変異によって2つの花器官が他の花器官へと変化する。

一方、ベチュニアのgp突然変異体では、花弁のみがく片へ変化し、雄蕊には変化が起こらず、ABCモデルに合わない。これには、遺伝子重複が関与しているのかもしれない。回3で、ヌス科由来の遺伝子(ベチュニアのGPとトマトのTM6)はAP3グループの異なった2か所に位置しており、AP3グループのなかで遺伝子重複が起こることができ推定される。したがって、ベチュニアには、AP3グループに属するGP以外にもトマトから取られたTM6に近縁な遺伝子が、最低5つは存在しているはずである。そして、その遺伝子が雌雄形成の機能をもっていると考えれば、GPが花弁形成のみに関与していることの説明がつく。このMADS遺伝子を探索することにより、ベチュニアにおける花器官形成の多様性を解明できるかもしれない。また、ベチュニアでは、PIグループにおいても遺伝子重複が起きており、FBP1とPMADS2(38)と同じ遺伝子座の2つの遺伝子が知られている。B遺伝子の機能発現には、FBP1だけが必要であり、PMADS2の発現を抑制しても、表現型に変化は現れない。このことから、PMADS2は元々もっていた機能を失い独自の進化を遂げているか、あるいは雌雄遺伝子となりその機能を失っているのであろうと推察される。

*15 コサプレッション
導入した遺伝子をセンス方向に発現させると、ともとホストがもっていた導入したのと同じ配列をもつ遺伝子、導入した遺伝子、両方の発現が抑制される現象。理由はよくわからていない。
被子植物が分歧した後、単子葉類が双子葉類から分岐するまでの間、遺伝子重複によってできたと推定される。AGLI1グループに属する遺伝子はシロイヌナズナとベチュニアから単離されているが、両者ともに胚珠形成に関与していると考えられる。とりわけ、ベチュニアのFBP1239はエクソエピックな発現16をさせるが、段階の内側や薬室の外側に胚珠を形成する40。花器官の上に並びだしいついた胚珠は、裸子植物の雛性生殖器官を思い起こさせること（しかし、珠被が2枚ある点は大きく異なっている）。

一方、AGグループは、雌しぐに雌しぐ形成に関与する。シロイヌナズナのAG、キギョウソウのPLEの変異体では、雌しぐに雌しぐが形成されず、花穂が花穂だけから成る花が形成される。AGグループの多くの遺伝子は雌しぐに雌しぐ形成過程で発現しており、AGLI1グループ同様、胚珠での発現も見られる。しかし、ag1を含む変異体で、胚珠形成が見られることもあり、AGは胚珠形成に必須の遺伝子ではないようである43。

オートー、雄しぐ、心皮、胚珠での発現の見られたAGグループとAGLI1グループの祖先遺伝子が、遺伝子重複により、胚珠特異的に機能するAGLI1と、雌しぐに心皮特異的に機能するAGL1に機能分化したのかもしれない。

AGグループのなかでも、さらに遺伝子重複が起こっている。AGLI14、AGL530は、双子葉植物が単子葉植物から分かれた後、AGと分岐したことが図3からわかる。AGL1とAGL5はすでにAGから機能分化しているようで、雌しぐに胚珠のみで発現が見られ、雌しぐでは発現していない。また、両遺伝子は、AGによって発現誘導されているようで、AG変異体では発現が見られない。さらに、AGLI5遺伝子は上流にAGの結合配列をもち、in vivoでAGを過剰発現させると、AGLI5の転写が誘導されることがわかった301。

では、AGLI5のAG结合領域はどのように形成されたのであろうか。AGの上流にも同様な配列があり、自己制御に関与しているのであろうか。今後、雌しぐ遺伝子であるAGLIやAGの制御領域の解析により、遺伝子重複に伴う、遺伝子制御系の進化についての知見が得られる可能性がある。

6. それ以外のグループ

以上の他に、花器植物以外で主に発現している遺伝子グループとして、種の主に発現しているAGL15グループ、根の特異的に発現しているAGL12グループとAGL17グループ、植物体全体で発現しているものと、根で発現しているもの（AGL14）を含むAGL14グループがこれまで知られている。これらの生殖器官分化に関与していない遺伝子群の機能や、どのように進化してきたのかはよくわかっていない。

おわりに

以上、MADS遺伝子族の各グループについて、グループ内で起こった遺伝子重複について見てきたが、それぞれのグループもまた、過去の遺伝子重複によって形成されたと考えられる。しかも、ABCモデルで花器植物形成に重要な役割を果たしているとされた遺伝子グループは、図3より被子植物が裸子植物と分岐するより前に、すでにそれぞれのグループに分かれていたことがわかる。被子植物と裸子植物の祖先は原裸子植物1617と呼ばれる植物群で、花穂はき、花弁や心皮が別の、胚珠すらもまた、胚乳で繁殖していたことが化石記録からわかっている。

一体、もともとMADS祖先遺伝子がもっていた機能とは何だったのであろうか。さらに、遺伝子重複とその後の遺伝子レベルでの機能分化が、表現型である形態にどのような影響を与えたのか、他の形態形成遺伝子群（AP240、BELLI46、KNOX47）との関係は、どう変化してきたのであろうか。単子葉から種子植物、裸子から被子植物への進化という陸上植物の進化におけるこの生物進化・多様性形成の根幹に関わる問題を解く鍵は、より広範な分類群、とりわけ裸子植物、シダ植物、コケ植物、緑藻類でのMADS遺伝子族の役割を解析することにある48。さらに、これまで報告されている被子、裸子植物でのMADS遺伝子族は、すべてMADS boxとK boxの両方をもっており、動物や菌類の
MADS遺伝子族とは異なっている。いつも、植物型のMADS遺伝子族が形成され、現在のように多くの遺伝子群に分かれ、多様な機能をもつようになったのであろうか。興味は尽きない。

◆必読文献
1) 横井正利：「分子進化遺伝学」培風館 (1990)

◇引用文献
8) 西田和雄, 栄和, 中治賢夫編著：「形態形成にかかわる遺伝子群」共立出版 (1993)
9) 佐原弘明：「組織の形を決める分子機構」植物細胞工学シリーズ1, pp. 52-61, 秀和社 (1994)
42) Fessenstein, J.: PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by author. Department of Genetics, University of Washington, Seattle, USA.