# 研究部門の研究の現状

# ○ 細胞応答研究室

細胞は、自分の周囲にある栄養素やホルモンの量、温度、圧力などを感知して、どのような活動を行うかを決定する。特に、卵子や精子を生み出す生殖細胞は、周囲の条件に応答して、染色体の数を半減させる特殊な細胞分裂である減数分裂を開始する。減数分裂では、一度のDNA合成の後、二度の連続した染色体分配が行われる。この間に、高頻度の遺伝子組換えや、相同染色体が両極に分かれる特殊な染色体分配など、体細胞では見られない興味深い特徴がある。本研究室は、減数分裂を行う最も単純な生物の一つである分裂酵母をモデル系として、細胞が環境の変化を感知して、減数分裂を行って配偶子を形成するまでの過程を分子レベルで記載することを目標とし、研究を行っている。

所長 山本 正幸 (TEL: 0564-55-7650) yamamoto@nibb.ac.jp 特任准教授 山下 朗 (TEL: 0564-55-7511) ymst@nibb.ac.jp

# ○ 細胞社会学研究室(モデル生物研究センター器官培養研究支援室)

哺乳類以外の動物は孵化すると直ちに自然にある餌を食べる。哺乳類は卵に貯えられた栄養分が少ないために発生の初期で孵化し、成長に必要な栄養分を取るために母親に寄生する。母親から栄養や酸素を受け取り、老廃物や二酸化炭素を渡す器官が胎盤である。胎盤は胎児由来の組織であるが、その形成には母親由来の細胞との相互作用が不可欠と考えられる。本研究室では母と子の細胞間相互作用を研究している。

助教 濱田 義雄 (TEL: 0564-55-7659) hamada@nibb.ac.jp

## ○ 神経細胞生物学研究室

## (岡崎統合バイオサイエンスセンター 生命動秩序形成研究領域)

DNA→mRNA→タンパク質という遺伝子発現は生命活動の根幹であるが、神経細胞ではこの遺伝子発現のうち、タンパク質への翻訳が局所的に制御されている。すなわち、一部の重要なmRNAが神経樹状突起へ輸送され、入力があったシナプス近傍で局所的にタンパク質へ翻訳される。このmRNA輸送・局所的翻訳制御によって、入力強度・頻度の高いシナプスが選択的に強化され、それが記憶や学習に重要であることが明らかにされてきている。樹状突起へのmRNA輸送と局所的翻訳制御に中心的な役割を果たしているのがRNA granuleと呼ばれる巨大複合体である。本研究室ではRNA granuleに局在するRNA結合タンパク質およびmRNAを同定、解析するとともに、それらがシナプス機能、神経ネットワーク形成、さらには記憶や学習などにどのような役割を果たすかについて、マウスを用いて分子レベルから個体レベルまで研究をおこなっている。

准教授 椎名 伸之 (TEL: 0564-55-7620) nshiina@nibb.ac.jp

## ○ 生殖細胞研究部門

有性生殖を営む多細胞動物において、配偶子-卵子と精子-を作る生殖細胞は、次の世代に遺伝情報を正確に伝達する。一方、多数の配偶子を継続して生産することにより子孫を確実に残すことが担保される。本研究部門では、マウス精子形成を主な対象として、この、正確性と生産性を併せ持つ配偶子形成の謎の解明をめざす。当面の目標は、マウス精子形成を支える幹細胞を同定してその性質を明らかにすること、および、微小環境(ニッチ)の実体を解明して幹細胞の自己複製と分化を制御する機構を明らかにすることである。分子生物学、分子遺伝学、形態学、ライブイメージングなどの手法により、多角的に上記の問題に取り組んでいる。

教授 吉田 松生 (TEL: 0564-59-5865)shosei@nibb.ac.jp (http://www.nibb.ac.jp/germcell/)

# ○ 形態形成研究部門

受精した卵が細胞分裂を繰り返しながら生物固有の形づくりを進行する過程、すなわち形態形成には個々の細胞の形態変化や移動による3次元的なリモデリングが必須である。細胞分化によって新たな形質を、また細胞骨格の再構成によって新たな形態や細胞極性を獲得した細胞は、それぞれの運命にしたがって正しく配置されることによって、形態的、機能的に洗練された器官、そして個体を形づくる。本研究部門では形態形成を司る細胞外シグナルや転写調節因子、細胞接着分子に焦点をあて、形態形成の分子メカニズムを解明することを目標にして、ホヤ、アフリカツメガエル、マウスなどモデル動物を用いた研究を行っている。

教授 上野 直人 (TEL: 0564-55-7570) nueno@nibb.ac.jp 准教授 木下 典行 (TEL: 0564-55-7573) nkinoshi@nibb.ac.jp (http://www.nibb.ac.jp/morphgen/)

# ○ 発生遺伝学研究部門(平成27年度の募集はありません。) (岡崎統合バイオサイエンスセンター 時系列生命現象研究領域)

ショウジョウバエを中心とした動物を用いて、生殖細胞の形成機構を研究している。 多くの動物において、卵の一部の細胞質(生殖質)に生殖細胞の形成に必要十分な複数の因子が局在する事が知られている。これらの因子の単離同定および機能解析が現在進行している。特に、生殖細胞としての特質を決定する因子、すなわち、古くから想定されてきた「生殖細胞決定因子」の定義に良く合う分子が存在することを示唆する結果も得られている。この分子を同定することが本研究室の大きなねらいである。また、セルソーターを使った始原生殖細胞の単離、それを材料としたマイクロアレイ解析により、生殖細胞形成を司るネットワークの解析も開始しつつある。そのほか、生殖細胞の性決定に関する研究についても共同研究の募集を行う。

# ○ 分子発生学研究部門

# (岡崎統合バイオサイエンスセンター 時系列生命現象研究領域)

動物の形態形成のさまざまな局面で分泌性タンパク質は重要な働きを担っている。 本研究部門では脊椎動物の体幹部の初期発生をモデルに、形態形成過程における分泌 性タンパク質の作用機構を解明することを目指している。具体的には、分泌性タンパ ク質およびその標的遺伝子の機能を、遺伝子改変マウスやアフリカツメガエルを用い て解析すること、ならびに体幹部形成変異体の探索とその解析を、ゼブラフィッシュ を用いて行っている。

教授 高田 慎治 (TEL: 0564-59-5241)stakada@nibb.ac.jp (http://www.nibb.ac.jp/~cib2/)

#### ○ 初期発生研究部門

動物の発生は受精卵に始まり、やがて明確な体軸を持つ構造が形成される。ほ乳類 受精卵には将来の体軸に関わる情報は偏って存在していないが、マウスでは受精後約6月目には将来の体軸を見いだすことができる。ほ乳類胚において、体軸を決める情報がどのように胚の中に形成され、形として具現化されるかを解明することを目標としている。主にマウスを用い、ライブイメージング、細胞系譜解析などの手法により、胚の中での細胞の挙動を明らかにする。ライブイメージング観察用の一連のレポータートランスジェニックマウスの作製および維持、胚の培養、顕微鏡装置の開発も行っている。個々の細胞の個性がどのように獲得され、胚全体の形が形成されるかについても研究を進めている。

教授 藤森 俊彦 (TEL: 0564-59-5860) fujimori@nibb.ac.jp (http://www.nibb.ac.jp/sections/fujimori.html)

#### ○ 生殖遺伝学研究室

(モデル生物研究センター モデル動物研究支援室 小型魚類飼育開発支援ユニット)

さまざまな動物で見られる性分化・性転換、生殖幹細胞制御の多様性と、その背後にある普遍的機構を明らかにすべく、メダカをモデルに研究を行っている。とりわけ、生殖細胞が性や生殖のキャパシティーを制御しているということが明らかになりつつあり、これら生殖細胞の新たな機能について分子遺伝学的手法(変異体解析)、イメージング手法、ゲノムインフォマティクスなどを用いて、多角的かつ総合的な解析を推進している。また遺伝子発現誘導系統メダカなど新たな系統開発も精力的に行っている。

メダカに限らず生殖に関する共同研究を積極的に受け付けている。

准教授 田中 実 (TEL: 0564-59-5851)mtanaka@nibb.ac.jp

(http://www.nibb.ac.jp/reprogenetics/index.html)

#### ○ 統合神経生物学研究部門

本研究部門では、脊椎動物の中枢神経系が個体発生の過程で形成される仕組みや、 成体において完成した脳・神経系が機能する仕組みについて、主にマウスを用いて分 子・細胞レベルからシステムのレベルまで総合的に研究している。また、病態との関 連から創薬まで視野に入れた研究を行っている。主要な研究プロジェクトは以下の通 りである。

- 1) 体液・血圧の恒常性を司る脳内機構
- 2) 神経細胞の移動と軸索誘導における細胞骨格制御の分子機構
- 3) 受容体型プロテインチロシンホスファターゼの機能と役割に関する総合的研究 教授 野田 昌晴 (TEL: 0564-59-5846) madon@nibb.ac.jp 准教授 新谷 隆史 (TEL: 0564-59-5847) shin@nibb.ac.jp (http://niwww3.nibb.ac.jp/)

# ○ 脳生物学研究部門(平成27年度の募集はありません。)

神経系は体の中の他の組織と比較すると著しく異なる機能的、構造的特徴を持つ。近年の分子生物学的研究によって、神経系を構成する分子も免疫系などで使われている分子と構造的共通性を持ち、従って、共通の祖先から由来しているらしいことが明らかになりつつあるが、その進化様式については、なお不明な点が多い。当研究室では、神経系の情報処理機構進化の分子機構を最終的な目標として、幾つかの異なるレベルでの研究を進めたいと考えている。記憶と遺伝子発現の連関と大脳皮質の領野形成と進化について研究している。

#### ○ 光脳回路研究部門

運動制御・認知・学習を司る脳機能は多数の神経細胞の協調的な活動によって成り立っている。この作動原理の解明には、脳内の多数の細胞活動やその入出力、神経細胞間の情報伝達の場であるシナプスの活動・可塑性を、リアルタイムで計測・操作する必要がある。当研究室では、2 光子イメージング、光遺伝学、ケミカルバイオロジー、電気生理学、等を融合した方法論を開発し、これをマウス・ラットの脳に適用することで、脳回路情報処理メカニズムの理解を目指している。

教授 松崎 政紀 (TEL: 0564-55-7680) mzakim@nibb.ac.jp (http://www.nibb.ac.jp/circuits/)

# ○ 神経生理学研究室

(モデル生物研究センター モデル動物研究支援室 哺乳動物飼育開発支援ユニット) 動物の行動生物学が中心課題。現在はメダカとヒトの視覚系の解析を中心に、行動 生物学的な研究を行っている。視覚の動物と言われるメダカとヒトに心理物理学的な アプローチを行うことによって、動物の見るメカニズム、そして行動の原理を明らかにしていく。多くの動物は見るという能力を発達させることによって、生存競争に勝ち残ってきた。見るメカニズムを明らかにすることで、脳の、そして動物の理解が深まると考える。

准教授 渡辺 英治 (TEL: 0564-59-5595) eiji@nibb.ac.jp (http://www.nibb.ac.jp/neurophys/)

# ○ 生物進化研究部門

生物は祖先が持っていなかった新しい形質を次々と生み出しながら進化してきた。そして、新規形質の多くは、いくつかの性質が整って初めて有利になるような複合形質である。新規複合形質はランダムな突然変異の蓄積だけで説明できるのだろうか。あるいは未知の進化機構が存在しているのであろうか。この問題を解くには、新規複合形質を遺伝子のレベルに還元し、それらができあがるメカニズムを解明し、さらに、近縁種との比較から進化過程を推定することが必要である。我々は、ゲノム解読技術の革新を助けに、これまで分子生物学分子遺伝学的還元のできなかった非モデル生物を材料として、(1) 植物特有の細胞構築・動態、(2) 多能性幹細胞形成維持、(3) 陸上植物の発生、(4) 擬態、(5) 食草転換、(6) 植物の運動、(7) 植物の食虫性を個別な研究対象として、それらから得られた結果を総合し、新規複合形質がどのように進化しうるかの全体像を描き出すことを目指している。

教授 長谷部 光泰 (TEL: 0564-55-7546) mhasebe@nibb.ac.jp 准教授 村田 隆 (TEL: 0564-55-7549) tkmurata@nibb.ac.jp (http://www.nibb.ac.jp/evodevo)

# ○ 共生システム研究部門

マメ科植物は根粒菌(原核生物)の感染をうけると根に細胞分裂を誘導し、根粒という共生窒素固定器官を形成する。一方、多くの陸上植物はアーバスキュラー菌根菌(真核生物)と共生し、リンをはじめとするミネラルを効率よく吸収する。近年これら2つの共生には、複数の共通する宿主遺伝子が関わっていることが明らかになってきた。また根粒形成の制御においてはCLV1などメリステム形成の遺伝子が複数流用されてきたこともわかってきた。当研究室では、マメ科のモデル植物ミヤコグサを用いて、植物・微生物共生の分子メカニズムと発生進化プロセスを解明することを目的としている。また、共生や発生現象のシミュレーションによる数理解析を行い、現象の統合的理解を目指している。

教授 川口 正代司 (TEL: 0564-55-7564) masayosi@nibb.ac.jp (http://www.nibb.ac.jp/miyakohp/index.html)

#### ○ バイオリソース研究室

(モデル生物研究センター モデル動物研究支援室 メダカバイオリソースユニット) 条鰭類は脊椎動物の約半数を占める大きなグループである。また条鰭類は哺乳類を 含む肉鰭類と姉妹関係を形成することから、我々「ヒト」を含む哺乳類の進化を考察する上でも重要な位置を占めている。我々の研究室では、メダカ近縁種を用いた性決定システムの進化に関する研究、突然変異体の原因遺伝子の同定とその機能解析、メダカ近交系を用いた量的形質の遺伝的要因に関する研究を行っている。Fosmid ライブラリーの作成、遺伝子導入系統の作成、変異体のマッピング、TILLING 法による突然変異体の同定などの共同研究に対応することができる。さらに近年開発されたCRISPR-CAS9 によるゲノム編集に必要なgRNA 用プラスミドの調整や卵への DNA/RNAマイクロインジェクションを行うことができる。また 2012 年から始まった第3 期メダカバイオリソースプロジェクトを担う中心研究室として、メダカバイオリソースの収集・保存・配布をおこなうことでメダカ及びメダカ近縁種をもちいた新たな生物学研究の推進を担っている。

准教授 成瀬 清(TEL: 0564-55-7580)naruse@nibb.ac.jp (http://www.nibb.ac.jp/bioresources/)

#### ○ 構造多様性研究室

鱗翅目昆虫の成虫翅は二次元の上皮組織であり、翅輪郭形状の決定・気管、気管 小枝および翅脈のパターン形成・これらと関連した斑紋パターン形成などの興味深い過程を示す。これらの過程を形態学的な手法を用いて細胞レベルで詳細に記述するとともに、内在するメカニズムを明らかにしようとしている。

准教授 児玉 隆治 (TEL: 0564-55-7578) kodama@nibb.ac.jp

# ○ 多様性生物学研究室

多様な生物を用いて、各グループが独自の研究を行っている。

# 大野グループ:

マガキ、マナマコ、アカウニ、イトマキヒトデ等における神経ペプチドの生理 作用を、生殖腺および生殖細胞の成熟制御を中心に研究している。

助教 大野 薫 (TEL: 0564-55-7555) k\_ohno@nibb.ac.jp

#### 鎌田グループ:

出芽酵母を用いて、栄養環境センサー分子 TOR の研究を、遺伝学・生化学・ 細胞生物学などさまざまな手法を駆使して行っている。

助教 鎌田 芳彰 (TEL: 0564-55-7536) yoshikam@nibb.ac.jp

## 定塚グループ:

酵母をモデルとして、細胞分裂期に形成されるコンパクトに凝縮した染色体の 構築機構と、その構造が生物機能に果たす役割について研究している。

助教 定塚 勝樹 (TEL: 0564-55-7692) kjozuka@nibb.ac.jp

星野グループ: (モデル生物研究センター モデル植物研究支援室・アサガオバイオ

リソースユニット)

アサガオの多様な変異体を使い、遺伝子の発現制御機構と花色の発現機構を研究している。アサガオのゲノム情報など、研究基盤の整備も行っている。

助教 星野 敦 (TEL: 0564-55-7534) hoshino@nibb.ac.jp

栂根グループ: (モデル生物研究センターモデル植物研究支援室)

イネの内在性トランスポゾンによるゲノムへの影響やその動態と制御機構について研究している。さらに遺伝子の順・逆遺伝学的解析も行っている。

助教 栂根 一夫 (TEL: 0564-55-7521) tsugane@nibb.ac.jp

#### 真野グループ:

植物オルガネラの形成機構や機能変換の制御機構について、シロイヌナズナを主な実験材料として、細胞生物学、分子生物学、生化学、イメージング技術を駆使して解析している。

助教 真野 昌二 (TEL: 0564-55-7504) mano@nibb.ac.jp

木森・加藤グループ:(イメージングサイエンス研究分野)

光学顕微鏡や電子顕微鏡等で撮影された生物画像を対象として、新規の画像処理・解析手法の開発やアプリケーションソフトウェアの開発等を行っている。

特任助教 木森義隆(TEL: 0564-59-5885)kimori@nibb.ac.jp 特任助教 加藤 輝(TEL: 0564-59-5885)kkat@nibb.ac.jp (https:// is.cnsi.jp/)

## ○ 分子環境生物学研究部門

(岡崎統合バイオサイエンスセンター 生命環境研究領域)

マウス、爬虫類、両生類、魚類、無脊椎動物を用いてホルモンや化学物質応答遺伝子の解析、環境による性分化機構、性ホルモン受容体の進化、発生の臨界期での性ホルモン応答の不可逆性のメカニズムなどを解析している。生体を取り巻く環境変化や化学物質の影響について生命体レベルから分子レベルまでの総合的な視点で研究を行っている。

教授 井口 泰泉 (TEL: 0564-59-5235) taisen@nibb.ac.jp (http://www.nibb.ac.jp/~bioenv1/index-j.html)

#### 〇 環境光生物学研究部門

植物は、環境の変化に自らを順化適応させることで生き残りをはかる。太陽光を集め利用可能なエネルギーへの変換を行う光合成においても、さまざまな階層における光環境適応がみられる。本研究部門では、単細胞緑藻を中心としたモデル微細藻類について、分子遺伝学、生化学、分光学的手法さらにはライブイメージングの手法を駆使することで、特に光を集めるアンテナ装置がいかに効率よく光を集めているのか、

その分子基盤の解析を行っている。また、得られた基礎的知見を、南極の緑藻やサンゴと共生する褐虫藻、北太平洋の珪藻などに応用し、環境において重要なこれらの光 合成生物の生理生態の理解を目指している。

教授 皆川 純 (TEL: 0564-55-7515)minagawa@nibb.ac.jp (http://www.nibb.ac.jp/photo/)

# ○ 季節生物学研究部門

季節の移ろいにともない、日の長さ(日長)や気温、降水量など、生物をとりまく環境は刻々と変化する。動物はこの環境の変化を感知して、繁殖、渡り、休眠、換毛など、様々な生理機能や行動を変化させているが、動物が季節の変化を読み取る仕組みはまだ解明されていない。メダカは、日長や水温の変化を敏感に感知し、春から夏にかけて繁殖する。また、ゲノムが解読されているだけでなく、生息する地域によって季節の変化に対する応答性が異なることが知られている。本部門では、日本の様々な地域で採集された野生メダカや遺伝子改変メダカを駆使して、動物が日長や温度の変化を感知して環境の季節変化に適応する仕組みの全容の解明を目指している。

客員教授 吉村 崇 (TEL: 0564-55-7600) takashiy@nibb.ac.jp (http://www.nibb.ac.jp/sections/environmental\_biology/yoshimura/)

# ○ 時空間制御研究室

本研究室では主にマウス胚を用い、原腸陥入および左右非対称性決定の機構をライブイメージングによって解析している。またライブイメージングに適した顕微鏡自体の開発も手がけている。このために組織深部まで観察可能かつ褪色の少ない蛍光顕微鏡である2光子顕微鏡、さらに高速で立体画像を取得可能な光シート顕微鏡 Digital Scanned Light-Sheet Microscope (DSLM)を運用しており、DSLM 共同利用実験または個別共同利用研究のかたちで広く発生生物学や細胞生物学での共同利用を実施している。

准教授 野中 茂紀 (TEL: 0564-55-7590) snonaka@nibb.ac.jp

(http://www.nibb.ac.jp/~bioimg2/)

#### ○ モデル生物研究センター

モデル生物研究センターは、生物学研究の基盤となるモデル動植物等について、飼育栽培のための設備を提供するとともに、形質転換体の開発や保存、さらには解析研究の支援を行う施設である。本センターは、モデル動物研究支援室(哺乳動物飼育開発支援ユニット、モデル動物解析支援ユニット、小型魚類飼育開発支援ユニット、メダカバイオリソースユニット)、器官培養研究支援室、マーモセット研究施設、モデル植物研究支援室、アサガオバイオリソースユニットから成り立っている。マウス施設では、ノックアウトマウス・トランスジェニックマウス作製などにより遺伝子操作マウスの開発・飼育維持・解析を行い、受精卵凍結法により系統保存を行っている。

平成19年度からメダカバイオリソースの中核拠点となり、従来の変異体や遺伝子導入小型魚類飼育管理に加え、全国の汎用系統なども管理維持し、配布と有用系統の開発も行っている。鳥類施設では遺伝子導入により、遺伝子機能解析研究が可能となっている。器官培養施設では、細胞と器官レベルの実験を支援している。植物施設ではモデル植物の育成と形質転換体の開発支援を行っており、解析用の各種人工気象室を備えている。アサガオ施設は、ナショナルバイオリソースプロジェクトの分担機関として、アサガオの各種リソースの収集・保存・提供を行っている。

## 1. モデル動物研究支援室

#### 1)哺乳動物飼育開発支援ユニット

SPF マウスの飼育及び開発の支援を行っている。モデル生物研究センターの施設内には最大2万匹のSPFマウス飼育できる設備を備えており、マウス飼育支援のための凍結受精卵の作成、保管、解凍、移植の支援も行っている。さらにはトランスジェニックマウスやノックアウトマウス作成を支援するための偽妊娠マウスや里親の供給も行っている。所内の部門や研究室を通じた共同研究を支援している。

# 2) モデル動物解析支援ユニット

SPF マウス及び SPF ラットを利用した解析研究を支援している。モデル生物研究センターの施設内には、主として行動解析を行うための実験室を三つ備えている。一つは山手地区 SPF 施設内にある行動解析専用施設で、残り二つは明大寺地区にあり P2 及び P3 レベルの組換え DNA 実験室も可能な行動解析実験室となっている。所内の部門や研究室を通じた共同研究を支援している。

#### 3) 小型魚類飼育開発支援ユニット

近年新たに実験動物として確立されてきたメダカ、ゼブラフィッシュを用いた実験、さらにニワトリを主として用いた鳥類の実験を支援する。自動循環水槽や大型の孵卵室を備え、卵へのマイクロインジェクションもユニット内で可能となっている。新たな遺伝子改変系統の作出を行なっており、それら遺伝子導入小型魚類が飼育維持できる環境(P1A)を整えている。ニワトリの遺伝子組み換え実験(P2A)にも対応可能となっている。

## 2. メダカバイオリソースユニット

メダカバイオリソースユニット (http://www.shigen.nig.ac.jp/medaka/) ではメダカに関する生物遺伝資源の収集・保存をおこない、それらを統合的に提供することでメダカを用いた生物学・基礎医学分野を飛躍的に発展させることを目的として活動している。現在は600以上のメダカ系統、40万あまりのcDNAクローン、28万あまりの

BAC/Fosmid クローン、孵化酵素の提供とともに、2010 年からは TILLING による変異体 スクリーニングシステムの提供も行っている。2014 年度からは CRISPR-CAS9 によるゲ ノム編集のサポートも行っている。メダカバイオリソースユニットへの共同利用申し込みはバイオリソース研究室への共同利用申し込みとして対応する。

# 3. 器官培養研究支援室

培養細胞及び培養器官を利用した研究を支援する。モデル生物研究センターの施設内には、一般細胞培養室を初め、ES 細胞専用培養室、P2 実験専用培養室、器官培養室、酵母培養室などを備えている。また山手地区と明大寺地区それぞれに凍結細胞を保存するための大型液体窒素タンクを備えている。所内外の共同研究の支援を行っている。

#### 4. マーモセット研究施設

マーモセット研究施設では、文部科学省「脳科学研究推進プログラム課題:霊長類モデル動物の創出・普及体制の整備」(拠点長:佐々木えりか実験動物中央研究所応用発生学研究センター長)の参画機関である自然科学研究機構として、脳科学研究に有用性の高い遺伝子改変マーモセットの創出を行っている。現状では、共同研究を募集していない。

# 5. モデル植物研究支援室

シロイヌナズナ、ミヤコグサ、アサガオ、ヒメツリガネゴケ、クラミドモナスなどのモデル植物を、光・温度・湿度等を厳密に制御した環境条件のもとに培養育成するためのインキュベーターや恒温室が整えられている。また、強光及び極低・高温の極限環境下で培養育成する施設も設置されている。これらのほとんどは P1P レベルに指定されており遺伝子組換え実験も可能である。屋外には大小2つの温室、5棟(8室)のファイトトロン、2棟(5室)の P1P レベル形質転換植物用温室、圃場及び管理室が設置されている。

#### 6. アサガオバイオリソースユニット

アサガオバイオリソースユニットでは、ナショナルバイオリソースプロジェクト・アサガオ (代表機関:九州大学)の分担機関として、アサガオの各種リソースの収集・保存・提供を行っている。おもに取り扱うリソースは、変異系統ならびに cDNA と BAC クローンである。国内外におけるアサガオと近縁種の研究を支援している。

#### ○ 生物機能解析センター

共同利用研究体制の強化を目的とした研究施設の改組により、平成 22 年度に生物機能解析センターが設立された。生物機能解析センターは、生物機能情報分析室、光学

解析室、情報管理解析室より成り、それぞれの室に所蔵される分析・光学機器を用いた実験・研究をサポートできる体制を整えている。このような機器を利用した研究とともに、それぞれの室に所属する教員は独自の研究を展開している。

生物機能情報分析室は、遺伝子・タンパク質解析の共同研究拠点として、基礎生物学研究所の分析機器の管理・運用を行っている。超遠心機のような汎用機器から次世代シークエンサーのような先端機器に至るまで、40種類70台にのぼる機器を所蔵し、その多くは所外の研究者にも開放している。(生物機能情報分析室ホームページhttp://www.nibb.ac.jp/~analyins/CAI-home.html 参照)特に、機能ゲノミクスに力を入れており、次世代DNAシークエンサーと質量分析機を利用した共同利用研究を行っている。

光学解析室は大型分光照射施設である大型スペクトログラフと、デジタルスキャン 光シート顕微鏡 (DSLM)、2 光子顕微鏡、共焦点レーザー顕微鏡、さらに赤外レーザー で局所的遺伝子発現を実現する IR-LEGO 顕微鏡を所蔵している。(各装置の詳細は光 学解析室ホームページ http://www.nibb.ac.jp/lspectro/参照) これらの機器を用い た共同利用研究を行っている。

情報管理解析室は、共有メモリサーバ、分散処理用計算機クラスタ、大容量ディスクアレイ装置などから構成される生物情報解析システムを運用しており、これらを用いたゲノム規模での配列データ解析や画像処理、各種データベースの構築と運用のサポートなどを行っている。(詳細は http://www.nibb.ac.jp/cproom/ 参照) これらの設備を活用した、大規模データ解析やデータベース構築などを含む研究課題を共同利用研究として公募している。

#### 1. 生物機能情報分析室

最先端のゲノム科学を駆使して、「共生・発生・進化」をキーワードに研究を行っている。特に、昆虫アブラムシとその共生細菌ブフネラの共生系をモデルに、共生によるイノベーションを支える分子・遺伝子基盤とその進化過程の解明を目指している。 実験生物学と情報生物学の融合的アプローチが特徴である。

特任准教授 重信 秀治 (TEL: 0564-55-7670) shige@nibb.ac.jp

# 2. 光学解析室

「光」を使った非侵襲的な遺伝子発現誘導顕微鏡と、遺伝子の変異体ライブラリーから作製した変異体を組み合わせて、「個体レベル」での遺伝子機能解析を行っている。研究対象としては光学的アプローチに適し、ゲノムなどの情報が完備されたモデル生物である「メダカ」を使っている。遺伝子発現誘導顕微鏡とは、生体内の単一細胞に赤外線を照射することで熱ショック応答により目的の遺伝子発現を誘導するIR-LEGO法(Kamei et al. Nat. Methods, 2009; Deguchi et al. Dev. Growth Diff., 2009)

である。一方で、変異体を逆遺伝学的に作製できるTILLING法(Taniguchi et al. Genome Biol., 2007)により得たメダカに、トランスジェニック技術を使って熱ショックで遺伝子発現を操作できるようにする。これら技術を組み合わせて、生きた個体の中の遺伝子を操作し、生体内における様々な遺伝子の機能解析を目指している。

特任准教授 亀井 保博(TEL: 0564-55-7535)ykamei@nibb.ac.jp (http://www.nibb.ac.jp/lspectro/)

# 3. 情報管理解析室 (ゲノム情報研究室)

情報科学的アプローチで大量のゲノム情報から生命現象の理解を目指す研究を行っている。特に、近年急速にデータが蓄積し、自然界における多様性の実態が明らかになりつつある微生物のゲノムを対象として、網羅的な比較解析によるゲノム情報の体系化と、それに基づくゲノムの機能や進化の解明を目指した研究を行っている。このため、多数のゲノムを同時に比較するための高速オーソログ分類手法の開発や、それに基づく網羅的な比較ゲノムデータベースの構築を行ってきた。こうした情報基盤に基づいて、水平移動を含む複雑な微生物ゲノムの進化プロセスの解明に向けた取り組みを進めている。

助教 内山 郁夫 (TEL: 0564-55-7629) uchiyama@nibb.ac.jp

#### ○ IBBPセンター

平成 23 年 3 月 11 日に発生した東日本大震災では、東北地方の大学を中心に多くの 生物遺伝資源が毀損・ 消失した。震災による直接的な設備被害だけでなく、長期の 停電等により長年の研究活動によって貴重な生物遺伝資源が消失し、その結果多くの 研究者がその研究計画の方向転換や中断を余儀なくされた。 このような不測の事態 による生物遺伝資源の消失は今後も十分起こりえるため、何らかの対策を講ずること が不可欠である。生物遺伝資源の毀損や消失を回避するためには、個々の研究によっ て創出された生物遺伝資源のバックアップを作成し、オリジナルとは地域的に離れた 場所に保管することが有効である。このため大学連携バイオバックアッププロジェク ト (IBBP) を平成 24 年度から新たに開始した (http://www.nibb.ac.jp/ibbp/)。 IBBP では自然科学研究機構基礎生物学研究所に大型の冷凍・冷蔵保管施設を備えた IBBP センターを設置し、 生物遺伝資源の保管・管理を担当する。また北海道大学、東北 大学、東京大学、名古屋大学、京都大学、大阪大学、九州大学には大学サテライト拠 点を設置し全国の大学・研究所からのバックアップ依頼を受け付け、IBBP センター と協力してプロジェクトを推進する。IBBP センターでは大型の液体窒素保 存システ ム、超低温フリーザー、種子保存室に加え、DNA シークエンサー、プログラムフリー ザー、動植物細胞培養システム、バクテリア培養装置、ラボオートメーションシステ ム、レプリカ作成装置、バイオハザードキャビネット、蛍光・位相差・落射蛍光顕微

鏡など生物遺伝資源のバックアップと品質管理及び生物遺伝資源の付加価値の向上を 行うことができる最新の実験設備を備えている。

IBBP センターでは生物遺伝資源の付加価値を向上するための各種スクリーニングシステムの作成や新たな凍結保存法の樹立などの共同利用研究を行っている(IBBP 共同利用研究)。平成27年度の共同利用研究の公募は1月中旬の締め切りを予定している。公募の詳細はIBBPホームページに掲載するので参照していただきたい。

#### ○ 統合バイオサイエンスセンター

(生命時空間設計研究領域 核内ゲノム動態研究部門)

ヒトを含む様々な生物種のゲノム DNA の塩基配列の全容が明らかとなり、細胞特異的なエピゲノム情報も蓄積されつつある。最近では、核内におけるクロマチンのローカルな3次元構造が転写を含むゲノムの機能に重要な役割を担うことが明らかとなってきた。この膨大なゲノム情報はクロマチン繊維として数 μm の核に絡み合うことなく収納されており、その立体配置をもったゲノム核内構造は高度に組織化されている。当研究室では、クロマチンの動きをイメージングする新しい技術を用いることで、これまでとは全く異なるユニークなアプローチで、核内ゲノムのトポロジー変化が細胞の運命決定へ与える影響を理解し、ゲノム高次構造の制御メカニズムの解明に迫る。

特任准教授 宮成 悠介 (TEL: 0564-59-5850) miyanari@nibb.ac.jp

(http://www.oib.orion.ac.jp/Lab/Biodesign/miyanari.html)