LABORATORY OF BIOLOGICAL DIVERSITY	
KOMINE Group	
Associate Professor:	KOMINE, Yuriko
Associate Projessor:	KOMINE, IURIKO

We have been interested in the developmental and evolutional aspects of the structure of mammalian brains. In a comprehensive analysis of homeobox genes expressed in the developing mouse neocortex, we isolated a novel gene Zfhx2, which encodes a transcription factor containing three homeobox domains and 18 Zn-finger motifs. Zfhx2 is highly expressed in the developing mouse brain, particularly in differentiating neurons, and continues to be expressed throughout adulthood at a low level. Two other phylogenically related genes, Zfhx3 and Zfhx4, have been identified. The former was reported to be expressed in a manner dependent on neural differentiation, and the latter is a candidate gene causing congenital bilateral isolated ptosis. Although these three genes are expressed in substantially similar patterns in the developing brain, common functional features have not been clarified. Currently we have been focusing on Zfhx2 to reveal its function and mechanisms of expression control in the developing brain.

I. Expression of *Zfhx2* is negatively regulated by its own antisense RNA

We found that the antisense strand of Zfhx2 is also expressed in the mouse brain in a manner complementary to the expression of Zfhx2 mRNA (Figure 1). Although most neurons express Zfhx2 mRNA immediately after their final mitosis, several types of neuron (e.g., granule cells in the olfactory bulb and pyramidal and granule cells in the hippocampus) express antisense RNA prior to Zfhx2 mRNA during the early phase of their differentiation. By generating a genetargeting mouse line in which Zfhx2 sense RNA is expressed but not antisense RNA, we showed that this antisense RNA has a negative regulatory role in the expression of Zfhx2mRNA. These observations suggest that the ZFHX2 protein might have a role in a particular step of neuronal differentiation, and in some types of neuron, this step might be delayed by the expression of antisense RNA.

II. ZFHX2 might play roles in controlling emotional aspects

To elucidate the function of ZFHX2, we have also generated a Zfhx2-deficient mouse line. Although the production of the ZFHX2 protein is completely abolished in the homozygous mutant mice, the mice appear grossly normal and healthy. No anatomical abnormality has been observed in the mutant mouse brains so far examined. We hence subjected the Zfhx2-deficient mice to a comprehensive battery of behavioral tests to explore the physiological function of ZFHX2 in the nervous system. The homozygous Zfhx2 deficient mice showed several behavioral abnormalities, namely, hyperactivity (Figure 2), enhanced depression-like behaviors, and an aberrantly altered anxiety-like phenotype. These behavioral phenotypes suggest that ZFHX2 might play roles in controlling emotional aspects through the function of monoaminergic neurons where ZFHX2 is expressed.

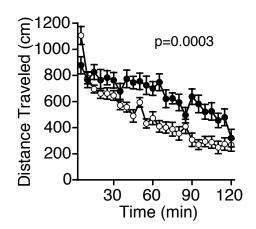
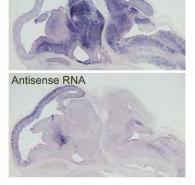



Figure 2. Locomotor activity of the *Zfhx2*-deficient mice. Mice were transferred into a novel environment and the distance traveled of each animal was measured for 2 hours. The *Zfhx2*-deficient mice (\bullet , n=19) were significantly more active than the wild-type mice (\circ , n=21).

Sense RNA

Figure 1. Expression of Zfhx2 sense RNA (mRNA) and antisense RNA in the embryonic mouse brain. The antisense RNA was expressed where mRNA was not.