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We are studying biological phenomena using mathematical
models. This method gives us an integrative understanding
of the behavior of complex systems in biology including
gene regulatory networks.

Mathematical models are especially useful in
understanding pattern formation in development. The study
of the mechanisms responsible for morphological
differences between species is an important research focus
of current developmental biology.

Ⅰ. Predicting regulation of the phosphorylation
cycle of KaiC clock protein using mathematical
analysis

Cyanobacteria are the simplest organisms exhibiting
circadian rhythms. In the bacterium, clock genes kaiA, kaiB
and kaiC have been characterized as the indispensable clock
regulators. KaiC plays a central role and exhibits rhythms in
transcription, translation and phosphorylation status under
continuous illumination conditions. The other clock proteins
KaiA and KaiB modulate KaiC autophosphorylation: KaiA
enhances autophosphorylation of KaiC, and KaiB inhibits
this action of KaiA. It was recently revealed that periodic
oscillation of the phosphorylation level of KaiC persists
even under continuous dark conditions, where transcription
and translation have almost ceased. The KaiC
phosphorylation cycle was reconstituted even in vitro, thus
confirming that the interaction between Kai proteins
generates the cycle, although the specific mechanism that
drives the clock remains unclear.

Using mathematical models, we investigated the
mechanism for the transcription-less KaiC phosphorylation
cycle.  We developed a simple model based on possible
KaiC behavior suggested by previous experimental studies.
In the model, the KaiC-KaiA complex formation followed
by a decrease in free KaiA molecules may attenuate the
KaiC phosphorylation rate, and it acts as negative feedback
in the system. However, our mathematical analysis proved
that simple dynamics based on the experimentally suggested
model never show the KaiC phosphorylation cycle.

We then developed the generalized formulae of models and
determined the necessary condition to generate the KaiC
phosphorylation cycle. Linear stability analysis revealed that
oscillations can occur when there is sufficient distance of
feedback between the recipient reaction and the effector.
Furthermore, we found that the negative feedback
regulations in closed systems can be classified into two
types: destabilizing inhibition and stabilizing inhibition.

Based on this result, we predicted that, in addition to the
identified states of KaiC, another unknown state must be
present between KaiC phosphorylation and the complex
formation. By incorporating the unknown state into the
previous model, we realized the periodic pattern reminiscent
of the KaiC phosphorylation cycle in computer simulation.
This result implies that the KaiC-KaiA complex formation
requires more than one step of posttranslational modification
including phosphorylation or conformational change of
KaiC. This prediction has recently been confirmed by
experimental methods.
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Figure 1. Schematic representation of closed circuit model and the
condition for the possible oscillation by inhibition of the transition from
state V1 to V2. Red-colored state (V1 , V4-V7) indicate that inhibition from
the states can destabilize the system and possibly cause oscillation.
Inhibition from the blue-colored state never induces oscillation.

Table 1. Summary of the results of the general state transition model
with conservation of molecules. The system could oscillate when the
inhibiting state is more than two steps ahead of the inhibited reaction
(from V1 to V2).  If the inhibiting state is less than three steps ahead of
the reaction, the system is always stable. The necessary distance between
the inhibiting state and reactant state does not depend on the system size.

Figure 2. Schematic representations of "Basic model" (left) and
"Multiple-phosphorelation-state model" (right). The basic model is
determined from experimental results. It was proven that the model
never shows oscillation. The multiple-phosphorelation-state model was
developed based on the mathematical analysis. The model shows clear
periodic oscillations. There are at least two different phosphorelated
states. The time-delay caused by the transition between the states is
essential for generating oscillation.



Ⅱ. Mathematical models for pattern formation
of dendrites of neurons

Dendrite is a part of a neuronal cell which is specialized for
receiving and processing synaptic or sensory input. A
remarkable feature of dendrite is its morphological diversity.
The shapes of dendritic trees are characteristic of individual
neuronal types and they are highly variable from one
neuronal type to another. This diversity contributes to
differential processing of information in each type of
neuron. Therefore, patterning neuronal class-specific
dendrites is a process to produce forms that realize the
physiological functions of neurons. However, a
comprehensive logic of dendrite development has not been
formulated yet.

Previously proposed mathematical models to explain the
pattern formation of dendrites assumed that dendrite
development is a consequence of stochastic sprouting and
subsequent growth arrest. Different forms of branching
functions were postulated and modified so that simulated
dendrograms fit the dendritic arbors of real neurons. One of
the problems of the previous models is that those
dendrograms represent limited features of dendritic patterns
such as order of branches and degree (the number of
branches at each order) and do not reproduce the full range
of the morphological features of the original dendrites. Other
problems include the fact that many of the models cannot
specify experimentally confirmed mechanisms to account
for their assumptions. To overcome these problems, we
developed a new class of dendrite growth model, which
represents all extension, orientation of growth and branching
of dendrites in a single scheme. In addition, this model has
explicitly incorporated an underlying biological mechanism,
that is, competitive interactions between neighboring
dendrites.

A key point in our modeling is to couple chemical
dynamics to dendrite growth. In our model, we distinguish
two spatial compartments: inside and outside regions of
neurons. The cell compartment dynamically grows under the
regulation of a chemical reactant activator. Thus we call our
model a “cell compartment model”. The activator reacts
with another reactant suppressor in the way of the reaction-

diffusion (RD) model of the so-called "Activator-Inhibitor
type"  (Turing, 1952; Gierer and Meinhardt, 1972). We set a
restriction in the 2D space so that the activator only diffuses
inside of the cells. These settings endow the system with
feedback loop regulations at two different levels: one
between two chemicals, and another  between the dynamics
of the chemicals and the expansion of the cell compartment.
Using this formula, we study the dynamics of dendritic
branch formation. Computer simulation showed that the cell
compartment model developed dendritic branching
autonomously. The model can represent characteristic
features of the spatial regulation observed in actual
dendrites: tiling and regeneration. We analyzed behavior of
the model and determined the conditions for the dendrite
formation. This work has been done in collaboration with
Dr. T. Uemura and Dr. K. Sugimura of Kyoto University.
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Figure 3. Examples of obtained dendrite patterns by computer simulation
of the model (left) and the correspondence observed in an experiment
(Grueber et al., 2003; Moore et al., 2002). Dendrites from the cells
spread and cover the space. However, they never interfere with each
other.

Figure 4. Regeneration after artificial severing. Patterns obtained by
computer simulation of the model (up) and the corresponding pattern
obtained in an experiment (down).
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